
* a

WRDC-TR-90-8007
Volume V
Part 9
Section 2 of 5

AD-A252 526

INTEGRATED INFORMATION SUPPORT SYSTEM (IISS)
Volume V - Common Data Model Subsystem
Part 9 - Neutral Data Manipulation Language (NDML) Precompiler
Development Specification
Section 2 of 5

J. Althoff, M. Apicella

Control Data Corporation D I .
Integration Technology Services ELEC TE
2970 Presidential Drive JUN 191992
Fairborn, OH 45324-6209 A

September 1990

Final Report for Period 1 April 1987 - 31 December 1990

Approved for Public Release; Distribution is Unlimited

MANUFACTURING TECHNOLOGY DIRECTORATE C)
WRIGHT RESEARCH AND DEVELOPMENT CENTER
AIR FORCE SYSTEMS COMMANDw
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433-6533

NOTICE

When Government drawings, specifications, or other data are used for any purpose other
than in connection with a definitely related Government procurement operation, the United
States Government thereby incurs no responsibility nor any obligation whatsoever, regardless
whether or not the government may have formulated, furnished, or in any way supplied the
said drawings, specifications, or other data. It should not, therefore, be construed or implied
by any person, persons, or organization that the Government is licensing or conveying any
rights or permission to manufacture, use, or market any patented invention that may in any way
be related thereto.

This technical report has been reviewed and is approved for publication.

This report is releasable to the National Technical
Infortation Service (NiISj. it NtilS, it uill be
available to the general public, including foreign nations

I4

DA D L. S N ect Manager DATE

Wri t-Pat rs AFB, OH 45433-6533

FOR THE COMMANDER:

RUCE A. RASMUSSEN, Chief DATE
WRDC/MTI
Wright-Patterson AFB, OH 45433-6533

If your address has changed, if you wish to be removed form our mailing list, or if the
addressee is no longer employed by your organization please notify WRDC/MTI, Wright-
Patterson Air Force Base, OH 45433-6533 to help us maintain a current mailing list.

Copies of this report should not be returned unless return is required by security
considerations, contractual obligations, or notice on a specific document.

REPORT DOCUMENTATION PAGE FORNAPPoVED
OUB NO. 0704-188

Pulic reporting burden for this collection of information Is estimated to average I hour per response, including the time for reviewing
instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the colection
of information. Send comments regarding this burden estimate or any other aspect of this coUection of information, including sugges-
tions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jeflersot
Davis Highway, Suite 1204. Arlington, VA 22202-4302. and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188). Washington, DC 20503.
1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

September 1990 Final Technical Report

I 1 Apr87 - 31Dec90
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
INTEGRATED INFORMATION SUPPORT SYSTEM (USS)
Volume V -Common Data Model Subsystem Contract No.: F33600-7-C-0464
Pan 9 - Neutral Data Manipulation Language (NDML) Pecompiler Development Specification PE. 7801 IF
Section 2 of 5
6. AUTHOR(S) Proj. No.: 595600

Task No.: P95600
J. Althoff, M. Apicellh

WU: 20950607

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8, PERFORMING ORGANIZATION
Controld Data Corporation REPORT NUMBER
Integration Technology Services
2970 Presidential Drive DS 620341200
Fairborn. OH 45324-6209

9. SPONSORING MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REP NUMBER

Manufacturing Technology Dinctorate (WRDC/MTI)
Wright-Panerson AFB, OH 45433-6533 WRDC-TR-90-8007. Vol. V. Pan 9

Section 2 of 5

11. SUPPLEMENTARY NOTES

WRDC/MTl Project Priority 6203

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for Public Release; Distribution is Unlimited.

13. ABSTRACT

This development Specification (DS) describes the functions, performance, enviromnent, interfaces, and design requirements for the Neutral Data
Manipulation Language (NDML) Precompiler. The NDML Precompiler is a component of the Common Data Model Processor (CDMP) and it
is used to generate various programs (e.g.. request processor orRP, RP drivers. CS-ES transformers, and local subroutine callers) tailored to satisfy
the NDML requests in a specific application program.

This report is divided into five (5) sections.

14. SUBJECT TERMS 15. NUMBER OF PAGES

885

16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASS 19. SECURITY CLASS 20. UMITATION ABSTRACT
OF REPORT OF THIS PAGE. OF ABSTRACT

SAR SAR SAR SAR

Standard Form 296 (Rev 249)
Prescibed by ANSI Sid 239-19
298-102

DS 620341200

SECTION 16

FUNCTION PRE6 - SELECT IS ACCESS PATH

The IS Access Path Selector is a compile-time module whose
purpose is to transform a Subtransaction identified by PRE5 -
Decompose CS NDML into an access path for traversal through the
appropriate local database. Each Subtransaction accesses only
one database, managed by one DBMS, at one computer. There may
be several Subtransactions that access the same database.
Results of Subtransactions are joined or unioned by the
Aggregator CI. PRE6 is called by PRE5.

The IS Access Path Selector derives access paths for
databases managed by CODASYL and TOTAL databases. It is
bypassed for Subtransactions that access relational databases.

Access paths for relational databases are provided by their
DBMSs. For relational databases, the NDML of a Subtransaction
is transformed to the DML of the relational DBMS by the Request
Process Generator that handles the Subtransaction. In effect,
the NDML serves as the generic relational DML, removing the need
to use PRE7 - Transform IS Access Path to Generic DML, as well
as PRE6 - Select IS Access Path.

The IS Access Path Selector finds the "best" access path
through the internal schema, where "best" is considered to be
the path that has either a calc key port or the fewest "find
member of set" and "find next of area" commands.

The IS Access Path Selector will find only paths that
conform to certain rules, making them confluent hierarchies. A
confluent hierarchy is built of hierarchies joined by a common
base record type. A common hierarchy of two record sets (e.g. A
owns B and B owns C) is a degenerate confluent hierarchy. The
most basic non-degenerate confluent hierarchy is formed when a
record type is a member in more than one record set (e.g., A
owns B and C owns B). By contrast, the most basic form of
access path structure that violates the rules for a confluent
hierarchy is formed when a record type is an owner in more than
one record set (e.g., A owns B and A owns C).

A confluent hierarchy can have any number of levels, but no
record type can be an owner in more than one record set. Any
record type may be a member in multiple record sets.

Conformance to confluent hierarchy rules is required only
for Subtransaction access paths. An internal schema certainly
does not have to be a confluent hierarchy, nor does a

16-1 4

-.. fY ccdes

A - al;orDi~t Spt..cial

DS 620341200

Transaction's access path. The Aggregator CI will join/union
results of the Subtransactions to form Transaction results. Note
also that the confluent hierarchy rules for Subtransaction
access paths are the same as the rules for forming proper
external schemas by projects and joins from the conceptual
schema.

Any record type in an access path is a candidate for the
entry point for database access, i.e., for the "port" of the
access. From a candidate port, the IS Access Path Selector
searches the surrounding set structure to find all the
referenced record types. To ensure adherence to the rules of
confluent hierarchies, once a path starts "up", it cannot
proceed down from a record type other than the port.

The IS Access Path Selector performs the following sequence
of steps:

It receives a relational Subtransaction from the

Decomposer (PRE5).

For each candidate key port (identified for insert by

record key = variable, and for select, modify, or
delete by a where clause in the form of field =
variable, where the field is a record key), it does
the following:

Selects a unique key port in preference to a

duplicate key port.

Selects the key port with the greatest number of

"find owner of set" commands.

It creates an access path based on information in

the IS-ACTION-LIST, IS-QUALIFY-LIST, and
SET-TABLE.

If there are no candidate key ports, it performs

activities similar to those of a key port to create an
access path that is built upwards, starting with the
record type at the bottom of the set chain for the
subtransaction.

A non-key port is chosen only if there are no possible

key ports.

It packages the access path for use by PRE7.

16-2

DS 620341200

16.1 Inputs

1. CDM Metadata

The entity classes needed are:

Component Data Field = CDF (E195)
Database = DB (E24)
Database Area Assignment = DBAA (E103)
Data Field = DF (E67)
DBMS on Host = DBMS on Host (E20)
Record Set = RS (E72)
Record Type = RT (E66)

2. The NDML internal schema request for which the access
path is to be selected. The request is in the form of:

IS-QUALIFY-LIST
SET-TABLE
OCCURS-TABLE-FOR-PRE7
COMPLEX-MAPPING-ALGORITHM-TABLE

which is output from function PRE5.

3. The parenthesized logic to be applied to each
subtransaction, along with the conditions which can be
evaluated at the internal schema level. The
information is contained in:

SUBTRANS-BOOLEAN-LIST

which is output from function PRE5A.

16.2 Processing

1. Receive the Subtransaction (IS-ACTION-LIST, IS-QUALIFY-

LIST, OCCURS-TABLE, and SET-TABLE) from
PRE5-Decomposer. All NDML-NOs, DBNOs in the
Subtransaction must be identical, thus we generally
omit any further reference to DBNO, NDML-NO when naming
records or fields. The IS-ACTION-LIST entries for a
Subtransaction will all have the same IS-ACTION value.

la. Determine whether the nested repeating data fields, if
any, conflict with the record sets that are involved in
the subtransaction.

Find the OT7-SUBTRANS-ID entry for this subtransaction

16-3

DS 620341200

in the OCCURS-TABLE-FOR-PRE7. If one is not found, go

to Step 2.

Find all the SET-TABLE entries for this subtransaction.
If none are found, go to Step 2.

If OT7-RTNO in the OT7-SUBTRANS entry = ST-OWNER in any
of the SET-TABLE entries, reject the NDML statement
(repeating data fields in set owners cannot be
accessed).

2. Identify candidate key ports for all types of actions
that traverse the database (including selects, inserts,
modifies, and deletes) by doing the following:

2.1 If IS-ACTION = I'
then for each non-blank IS-RTNO in the IS-ACTION-

LIST:
group the IS-ACTION-LIST entries with

that IS-RTNO
else for each non-blank ISQ-RTNOL in the IS-

QUALIFY-LIST:
group the IS-QUALIFY-LIST entries with

that ISQ-RTNOL and

ISQ-TYPE = *2' and
ISQ-OP = .=

2.2 Determine if all record key members are
represented in the qualify list:

Note - If IS-ACTION = I', make the following
substitutions in Steps 2.2.1 through 2.2.4:

IS-DBNO for ISQ-DBNOL
IS-RTNO for ISQ-RTNOL
IS-DFNO for ISQ-DFNOL
IS-INDEX for ISQ-INDEX

2.2.1 For each group identified in Step 2.1:

Find all the DF (E67) entries with DBNO,
RTNO = ISQ-DBNOL, ISQ-RTNOL for the group
and with RECORD-KEY-CODE = U' or D'.

2.2.2 For each DF entry found in Step 2.2.1,

starting with those whose RECORD-KEY-CODE =.U':

Note - In this step if IS-ACTION = I',

16-4

DS 620341200

consider only the IS-ACTION-ENTRYs that
have IS-MAPPED-TO-FLAG = Y', i.e. only
those for which values will be provided.

Determine if it is in the group by checking
for DFNO = ISQ-DFNOL among only those list
entries in the group. If it is in the
group, go to Step 2.2.3.

If it is not in the group, determine
whether all its components, if any, are in
the group by searching the hierarchy of
component data fields. This search
proceeds from the DF entry to any CDF
(E195) entries with the same DBNO,
RTNO, Group DFNO as the DF entry, and then
to the DF entries that have DBNO, RTNO,
DFNO = DBNO, RTNO, Comp DFNO of the CDF
entries. The search continues iteratively
until no more CDF entries are found.

If a DF entry (at any level) is found with
DFNO = ISQ-DFNOL among the list entries in
the group perform Step 2.2.3, and continue
the search with the next branch of the
hierarchy, i.e., do NOT check components of
a DF entry that is found in the group.

If a DF entry is not found among the list
entries in the group and if it does not
have and CDF entries of its own, the
original key data field is not completely
represented in the list and so, cannot be
used as a candidate key port. Abandon the
search and remove any entries that were
placed in the RECORD-KEY-TABLE. Repeat
Step 2.2.2 for the next DF entry from Step
2.2.1.

If the search finishes without being
abandoned, the original key data field is
completely represented in the list and can
be used as a candidate key port. Go to Step
2.2.4.

2.2.3 Build an RT-DATA-FIELDS entry in the
RECORD-KEY-TABLE as follows:

RK-DFID = DFNAME in the DF entry

16-5

DS 620341200

that matches the list
entry found in Step
2.2.2

RK-DFNO DFNO in DF entry that
matches the list entry
found in Step 2.2.2

RK-ISQ-PTR = ISQ-INDEX of the
list entry found in
Step 2.2.2

2.2.4 Finish an RK-REC-KEY entry in the
RECORD-KEY-TABLE as follows:

RK-RTID = ISQ-RTIDL for this
group

RK-RTNO = ISQ-RTNOL for this
group

RK-DF-USED = Number of data fields in
this key

RK-KEY-CODE = RECORD-KEY-CODE in the
DF entry

Note: U = unique key
D = dulicate key

Repeat Step 2.2 for the next group.

2.3 If no candidate key ports were identified in
Step 2.2, go to Step 2b.

2.4 Determine which key port will be the start of the
access path by doing the following, first for the
U's, then for the D's. A unique key port always takes
precedence over a duplicate key port.

2.4.1 If there are no entries in the SET-TABLE, then
there is only one record involved in this
subtransaction. Select the first entry in the
RECORD-KEY-TABLE as the key.

2.4.2 For each key represented in the
RECORD-KEY-TABLE:

Key with ISQ-EVAL-FLAG > 2 cannot be used as
key port

Search the SET-TABLE for an entry where
ST-OWNER = RK-RTID

16-6

DS 620341200

Using ST-OWNER as the starting point, traverse
the set chain upwards, tallying the number of
sets in the owner/member chain. Keep in RK
table.

2.4.3 Select the key with the highest tally as the
starting point in the access path.

2b. Identify the type of access path to be built by assigning a
CASE-TYPE to the subtransaction as follows:

2b.1 Set CASE-TYPE = 1 if the following conditions are
true:

1. No IS-QUALIFY-LIST entries whose ISQ-TYPE = 2 and
whose ISQ-TYPE2-SOURCE = 'E' or 'I' are
represented in the SUBTRANS-BOOLEAN-LIST.

2b.2 Set CASE-TYPE = 2 if the following conditions are
true:

1. The RECORD-KEY-TABLE is empty
2. All IS-QUALIFY-LIST entries whose ISQ-TYPE = 2

and whose ISQ-TYPE2-SOURCE = E' or I' are
ANDed. There must be at least 1 ISQ-EVAL-FLAG =
1 and no ISQ-EVAL-FLAG values > 1.

2b.3 Set CASE-TYPE = 3 if the following conditions are
true:

1. A key port was selected in Step 2.4. We have a
KEY-PORT-NO-ID.

2. Only one value for the key is represented in the
IS-QUALIFY-LIST.

3. No IS-QUALIFY-LIST entries whose ISO-TYPE = 2 and
whose ISQ-TYPE2-SOURCE = E' or I' are ORed
between record types. There must be at least 1
ISQ-EVAL-FLAG = 1 and none > 1.

2b.4 Set CASE-TYPE = 4 if the following conditions are
true:

1. A key port was selected in Step 2.4
2. Multiple values for the key are represented in

the IS-QUALIFY-LIST. Search IS-QUALIFY for entry
where type = 2E or I and ISQ-RTNOL = KEY-PORT-NO
and ISQ-EVAL-FLAG > 1.

3. No IS-QUALIFY-LIST entries whose ISQ-TYPE = 2 and
whose ISQ-TYPE2-SOURCE = E' or I' are ORed

16-7

DS 620341200

between record types. There must be no
ISQ-EVAL-FLAG values greater than 3.

2b.5 Set CASE-TYPE = 5 if the following conditions are
true:

1. The RECORD-KEY-TABLE is empty
2. No IS-QUALIFY-LIST entries whose ISQ-TYPE = 2 and

whose ISQ-TYPE2-SOURCE = *E' or I' are ORed
between record types. There must be no
ISQ-EVAL-FLAG > 3.

2b.6 Set CASE-TYPE = 6 if the following condition is
true:

1. There exists in the ISQ-QUALIFY-LIST entries
whose ISQ-TYPE = 2 and whose ISQ-TYPE2-SOURCE =*E' or 'I', which are ORed between record types.

2c. Generate access specifications to transform search

values to internal schema format.

For each IS-QUALIFY-LIST entry with

ISQ-TYPE = 12U and
ISQ-TYPE2-SOURCE = 'E' or 'I' and
ISQ-ALG-IDL = blank

Write an MVS access specification:

ACCESS-TYPE = 'MVS'
MVS-ISQ-PTR = ISQ-INDEX

3. If CASE-TYPE = 3 or 4, use the key port identified in Step
2.4 as the start of the access path by doing the following:

3.1 Set CURR-REC = RK-RTID
CURR-RTNO = RK-RTNO

3.2 If CASE-TYPE = 3
Write an RK' access specification:
ACCESS-TYPE = RK'
REC-SELECT-SPEC-PTR = RK-INDEX

Set ISQ-LEFT = 1 for the IS-QUALIFY-LIST entry
pointed to by RK-ISQ-PTR

3.3 If CASE-TYPE = 4

16-8

DS 620341200

3.3.1 Write an RK1' access specification:

ACCESS-TYPE = RKI'
RK1-LOOP-MAX = number of entries in the

IS-QUALIFY-LIST where
ISQ-RTIDL = RK-RTID and
ISQ-DFIDL = RK-DFID and
ISQ-TYPE = 2 and
ISQ-TYPE2-SOURCE = E' and
ISQ-SUBTRANS-IDL <= SUB-ID

3.3.2 For each entry in the IS-QUALIFY-LIST where:

ISQ-SUBTRANS-IDL = SUB-ID
ISQ-RTIDL = RK-RTID
ISQ-DFIDL = RK-DFID
ISQ-TYPE = 2 AND
ISQ-TYPE2-SOURCE = E'

Write an RK2 access specification:

ACCESS-TYPE = 'RK2'
RK2-RK-INDEX = RK-INDEX
RK2-LOOP-COUNT = incremental count
RK2-DFID = RK-DFID

3.3.3 Write an RK3 access specification:

ACCESS-TYPE - RK3'
REC-SELECT-SPEC-PTR = RK-INDEX

4. If CASE-TYPE = 1, 2, 5, or 6 generate an area search access
path.

If the DBMS does not support area searches then issue an
error message and stop. If the DBMS does support area
searches then issue a warning message and continue.

4.1 Select the RTNO in the IS-ACTION-LIST or IS-QUALIFY-
LIST that appears in the SET-TABLE at least once as
a ST-MEMBER, but never as a ST-OWNER. If the SET-
TABLE is empty, then only one RTNO appears in the IS-
ACTION-LIST and IS-QUALIFY-LIST; that is the one to
use.

Set CURR-REC = the port RTID
CURR-RTNO = the port RTNO

16-9

DS 620341200

4.2 This step was removed.

4.3 This step was removed.

4.4 Determine in which database areas the candidate non-
key port resides:

Find the DBAA (E103) entries with RTNO = the candidate

RTNO. Record the AREA IDs of the located entries.

4.5 Select one of the AREA IDs recorded in Step 4.4:

4.5.1 If IS-ACTION = 'S', 1', '2', 'K', M' or D'

Write an RA access specification:

ACCESS-TYPE = RA I
RAS-RTID = CURR-REC
RAS-AREAID = AREA ID

4.5.2 If IS-ACTION = I'

Write an RAI access specification:

ACCESS-TYPE = RAI'
RAS-RTID = CURR-REC
RAS-AREAID = AREA ID

4.6 Clear the GROUP-TABLE

4a. Determine if any conditions in the IS-QUALIFY-LIST for this
subtransaction participate in complex mapping algorithms.

Search the IS-QUALIFY-LIST for an entry where

ISQ-TYPE = 2 or 3 and
ISQ-EVAL-FLAG = 0 and
ISQ-SUBTRANS-IDL = SUBTRANS-ID or
ISQ-SUBTRANS-IDR = SUBTRANS-ID and
ISQ-ALG-IDL not = blank or
ISQ-ALG-IDR not = blank

If an entry is found:

Set CMA-FLAG =Y

5. Generate access specifications to process the current record
by doing the following:

16-10

DS 620341200

5.0a Generate access specification to move the current

record from the schema area to working-storage.

Write an MR1 access specification:

ACCESS-TYPE = MR'
MR-RTNO = CURR-RTNO
MR-RTID = CURR-REC

5.a Generate access specifications to convert retrieved
IS data values to CS format using complex mapping
algorithms.

For each COMPLEX-MAPPING-ALGORITHM-TABLE entry with

CMA-SUBTRANSACTION = SUB-ID

CMA-RETR-UPD .R1

5.a.l Generate access specifications to move entire

records to algorithm input parameters.

For each CMA-PARAMETER-ENTRY with

CMA-RT-NO = CURR-RTNO and
CMA-DF-NO not filled in:

write an FU4 access specification:

ACCESS-TYPE = 'FU4'
FU4-ALG-ID = CMA-MOD-ID

FU4-MOD-INST = CMA-MOD-INSTANCE
FU4-PARM-NO = CMA-PARM-NO
FU4-RTID = CURR-REC

5.a.2 Generate access specifications to move data

fields to algorithm input parameters.

For each CMA-PARAMETER-ENTRY with

CMA-RT-NO = CURR-RTNO and
CMA-DF-NO filled in:

write an FU3 access specification:

ACCESS-TYPE = FU3'
FU3-DFNO = CMA-DF-NO
FU3-ALG-ID = CMA-MOD-ID
FU3-PARM-NO = CMA-PARM-NO

16-11

DS 620341200

FU3-NOD-INST = CMA-MOD-INST
FU3-DFID = CMA-DFID
FU3-RTID = CURR-REC
FU3-DF-TYPE = CMA-DF-TYPE
FU3-IS-PTR = IS-INDEX

5.a.3 Generate access specifications to move
constant values to algorithm parameters.

For each CMA-PAPAMETER-ENTRY with

CMA-CONST-VAL filled in:

write an FG4 access specification:

ACCESS-TYPE = FG4'
FG4-CONSTANT = CMA-CONST-VAL
FG4-ALG-ID = CMA-MOD-ID
FG4-MOD-INST = CMA-MOD-INST
FG4-PARM-NO = CMA-PARM-NO

5.a.4 Generate access specifications to call
complex mapping algorithms.

write a CAL access specification:

ACCESS-TYPE = "CAL'
CAL-ALG-ID = CMA-MOD-ID
CAL-PARM-COUNT = CMA-PARM-COUNT
CAL-MOD-INST = CMA-MOD-INST

5.a.5 Generate access specifications to move output

algorithmn parameters to CS tags.

If IS-ACTION = D' or M':

For each CMA-PARAMETER with
CMA-TAG-NO filled in:

write an OU4 access specification:

ACCESS-TYPE = OU4'
OU4-ALG-ID = CMA-MOD-ID
OU4-MOD-INST = CMA-MOD-INST
OU4-PARM-NO = CMA-PAR -U1O
OU4-TAG-NO = CMA-TAG-NO

5.b Generate access specifications to check record union
discriminator predicates of where clause entries for
all CASE-TYPE values, except CASE-TYPE = 6.

16-12

DS 620341200

Search the IS-QUALIFY-LIST for an entry where

ISQ-RTIDL = CURR-REC and
ISQ-TYPE = 2 and
ISQ-TYPE2-SOURCE = U'

Write a UIF access specification:

ACCESS-TYPE = UIF'
UIF-RTNO = CURR-RTNO

NOTE: The UIF access type generates a call to a
support routine which formats record union
discrimination checks based on information in
the SUBTRANS-BOOLEAN-LIST.

5.c Generate access specifications to check
field-op-variable predicates of where clause entries
where CASE-TYPE = 3, 4 or 5

5.c.1 For each IS-QUALIFY-LIST entry where

ISQ-RTNOL = CURR-RTNO and
ISQ-TYPE = 2 and
ISQ-TYPE2-SOURCE = E' or I' and
ISQ-LEFT = N' and
ISQ-ALG-IDL = blank and
ISQ-EVAL-FLAG > 0

5.c.1.1 Set ISQ-LEFT = 1

5.c.1.2 If ISQ-EVAL-FLAG = 2 or 3

Write a RS5 access specification:

ACCESS-TYPE = 'RS5'
RS5-DFNO = ISQ-DFNOL
RS5-OP = ISQ-OP
RS5-ISQ-PTR = ISQ-INDEX
RS5-SIDE = ILI
RS5-DF-TYPE = ISQ-TYPEL
RS5-IF-OR = IF' for first RS5

access specification
written for CURR-REC
'OR' for second thru
nth access
specification
written for CURR-REC

16-13

DS 620341200

5.c.1.3 If ISQ-EVAL-FLAG = 1

Write a RS4 access specification:

ACCESS-TYPE = RS4'
RS4-DFNO = ISQ-DFNOL
RS4-OP = ISQ-OP
RS4-ISQ-PTR = ISQ-INDEX
RS4-SIDE = L'
RS4-DF-TYPE = ISQ-TYPEL

5.c.2 If a RS5 access specification was written
in Step 5.c.1.2

Write a NXS access specification:

ACCESS-TYPE = NXS'

5.1 Generate access specifications to check field-op-
variable predicates of where clause entries where
CASE-TYPE = 2

For each IS-QUALIFY-LIST entry with

ISQ-RTNOL = CURR-RTNO and
ISQ-TYPE = 2' and
ISQ-TYPE2-SOURCE = E' or I' and
ISQ-EVAL-FLAG = 1 and
ISQ-LEFT ' N' and
ISQ-MAP-ALG-IDL = blank

set ISQ-LEFT = Y'

write an RS4 access specification:

ACCESS-TYPE = RS4'
RS4-OP = ISQ-OP
RS4-ISQ-PTR = ISQ-INDEX
RS4-SIDE = Lf
RS4-DFNO : ISQ-DFNlOL
RS4-DF-TYPE = ISQ-TYPEL

5.2 Generate access specifications to check field-op-
field predicates of where clause entries:

For each IS-QUALIFY-LIST entry with

16-14

DS 620341200

ISQ-RTNOL = CURR-RTNO and
ISQ-TYPE = 3' and
ISQ-LEFT = N' and
ISQ-RTNOL = ISQ-RTNOR and
ISQ-DFNOL not = ISQ-DFNOR and
ISQ-MAP-ALG-IDL = blank and
ISQ-MAP-ALG-IDR = blank

set ISQ-LEFT 'Y'

ISQ-RIGHT =Y'

Write an RSl access specification:

ACCESS-TYPE = RS1'
RSI-DFNOL = ISQ-DFNOL
RSI-DF-TYPEL = ISQ-TYPEL
RSl-DFNOR = ISQ-DFNOR
RSl-DF-TYPER = ISQ-TYPER
RSl-OP = ISQ-OP

5.2a Generate access specifications to transform
field-op-variable entries to conceptual schema
format if any predicate in the where clause
participates in a complex mapping algorithm.

If CMA-FLAG = I:

For each unique ISQ-DFIDL in the IS-QUALIFY-LIST
entry with

ISQ-RTNOL = CURR-RTNO and
ISQ-TYPE = 2' and
ISQ-TYPE2-SOURCE = E' or I' and
ISQ-ALG-IDL = blank

Write an OU5 access specification:

ACCESS-TYPE = 'OU5'
OU5-DFID = ISQ-DFIDL
OU5-DF-TYPE = ISQ-TYPEL
OU5-RTID = ISQ-RTIDL
OU5-DFNO = ISQ-DFNOL
OU5-TAGNO = CSQ-AUCL (ISQ-CSQ-PTR)

5.2b Generate access specifications to transform
field-op-field entries to conceptual schema
format if any predicate in the where clause
participates in a complex mapping algorithm.

16-15

DS 620341200

If CMA-FLAG =Y

For each IS-QUALIFY-LIST entry with

ISQ-SUBTRANS-IDL = SUB-ID and
ISQ-RTNOL = CURR-RTNO and
ISQ-TYPE = 3' and
ISQ-MAP-ALG-IDL = blank

If IS-ACTION = 'D' or 'M'
write an OU5 access specification:

ACCESS-TYPE = 'OU5'
OU5-RTID = ISQ-RTIDL
OU5-DF-TYPE = ISQ-TYPEL
OU5-DFID = ISQ-DFIDL
OU5-DFNO = ISQ-DFNOL
OU5-TAGNO = CSQ-AUCL (ISQ-CSQ-PTR)

If IS-ACTION = 'S' write an RF1 access
specification

5.2c Generate access specifications to transform
right sides of field-op-field where clause
entries to conceptual schema format if any
predicate participates in a complex mapping
algorithm.

If CMA-FLAG = YI:

For each IS-QUALIFY-LIST entry with

ISQ-SUBTRANS-IDR = SUB-ID and
ISQ-RTNOR = CURR-RTNO and
ISQ-TYPE = 3' and
ISQ-MAP-IDR = blank

If IS-ACTION = 'D' or 'M'
write an OU5 access specification: generate

MOVE D-dfno to TAG-tagno

ACCESS-TYPE = 'OU5'
OU5-RTNO = ISQ-RTNOR
OU5-RTID = ISQ-RTIDR
OU5-DFNO = ISQ-DFNOR
OU5-DATATYPE = ISQ-TYPER
OU5-TAGNO = CSQ-AUCR (ISQ-CSQ-PTR)

If IS-ACTION = 'S'

16-16

DS 6203,41200

Write an RFl access specification.

5.2d Generate access specifications to compare fields
with fields from other records.

For each IS-QUALIFY-LIST entry with

ISQ-SUBTRANS-IDL = SUB-ID
ISQ-RTNOL - CURR-REC and
ISQ-TYPE - 3' and
ISQ-LEFT - N' and
ISQ-RTNOL not - ISQ-RTNOR and
ISQ-RIGHT IY' and
ISQ-ALG-IDL - blank

set ISQ-LEFT = Y

write a RS4 access specification:

ACCESS-TYPE = RS4'
RS4-DFNO = ISQ-DFNOL
RS4-OP - ISQ-OP
RS4-ISQ-PTR = ISQ-INDEX
RS4-SIDE .L
RS4-DF-TYPE = ISQ-TYPEL

5.2e Like Step 5.2d, but picking up fields from the
right sides of predicates:

For each IS-QUALIFY-LIST entry with

ISQ-SUBTANS-IDR = SUB-ID
ISQ-RTNOR - CURR-REC and
ISQ-TYPE - 3' and
ISQ-RIGHT - N' and
ISQ-RTNOR not - ISQ-RTNOL and
ISQ-LEFT - Y' and
ISQ-ALG-IDR - blank

set ISQ-RIGHT = Y

write a RS4 access specification:

ACCESS-TYPE RS4'
RS4-DFIJO = ISQ-DFNOR
P54-OP - ISQ-OP
RS4-SIDE .*R'
PS4-ISQ-PTR ISQ-INDEX
PS4-DF-TYPE = ISQ-TYPEL

16-17

DS 62034120u

5.3 Generate access specifications to output fields for
retrieval actions:

5.3.1 If IS-ACTION not = S', 1', 2', or K', then

go to Step 5.4.

5.3.1a For each IS-ACTION-LIST entry with

IS-RTNO = CURR-REC and
IS-FLAG = N' and
IS-DF-DOESNT-REPEAT and
IS-MAP-ALG-ID not = blank and
IS-MAPPED-TO = Y

set IS-FLAG = 1

write a RF3 access specification:

ACCESS-TYPE = RF3'
RF3-ALG-ID = IS-ALG-ID
RF3-MOD-INST = CMA-MOD-INST
RF3-PARM-NO = IS-PARM-NO
RF3-IS-PTR = IS-INDEX

5.3.2 For each IS-ACTION-LIST entry with

IS-RTNO = CURR-REC and
IS-FLAG = N' and
IS-DF-DOESNT-REPEAT and
IS-ALG-ID = blank

set IS-FLAG = 1

write a RFI access specification:

ACCESS-TYPE = RF1'
RF1-RTID = IS-RTID
RF1-DFNO = IS-DFNO
RF1-DFID = IS-DFID
RFI-DF-TYPE = IS-DATA-TYPE
RFI-IS-PTR = IS-INDEX

add IS-SIZE and IS-ND to NEXT-POSITIO4

5.3.3 Generate retrieval access specifications for
repeating data fields by processing the
OCCURS-TABLE.

16-18

DS 620341200

Search the OCCURS-TABLE for OT-OCCURS-NEST
entries where

OT-SUBTRANS = current SUBTRANS-ID and
OT-MAPPED-TO = "Y" and
OT-RTNO = current RTNO

If no such entries are found, go to step 5.7.

Initialize the temporary working storage table
TEMP-INDEX-STACK to zeros. Set TIS-INDEX to 1.
Establish the current level of indexing as 1.
Note: There are a maximum of 3 levels of
indexing possible.

5.3.4 Determine if there are entries for the current
level of indexing by checking the
OT-INDEX-LEVELS field of the OT-OCCURS-NEST
entries identified in -tep 5.3.3.

If no OT-OCCURS-NEST entry has an
OT-INDEX-LEVELS greater than or equal to the
current level of indexing, go to step 5.7.

For steps 5.3.4.1 through 5.3.4.4, consider
only one OT-OCCURS-NEST entry from the set
identified in step 5.3.3 which has an
OT-INDEX-LEVELS greater than or equal to the
current level of indexing.

5.3.4.1 Establish the DFNO of the index for
the current level of indexing:

Set TIS-INDEX-DFNO = OT-DFNO
Increment TIS-USED.

5.3.4.2 Determine the initial value of the
index.

1. If OT-INDEX-DFNO = 0

Write an OCl acess specification
to set the initial value of the
index to 1:

ACCESS-TYPE = 'OCi'
OCI-INDEX-DFNO = TIS-INDEX-DFNO

16-19

DS 620341200

2. Else

Search the IS-QUALIFY-LIST for an
entry where:

ISQ-TYPE = 2 and
ISQ-DFNOL = OT-INDEX-DFNO
and
ISQ-DF-REPEAT-FLAG = 'I' and
ISQ-LEFT = 0

Set ISQ-FLAG = 1

If ISQ-RTIDL = CURR-REC

Write an OCi access specification to
set the initial value of the index to
1:

ACCESS-TYPE = lOCi'
OCI-INDEX-DENO = TIS-INDEX-DFNO

Go to Step 5.3.4.3.

Else

Write an OC2 access specification to
set the initial value of the index to
a specific occurrence:

ACCESS-TYPE = 'OC2'
OC2-INDEX-DFNO = TIS-INDEX-DFNO
OC2-ISQ-PTR = ISQ index

Go to Step 5.3.4.4.

5.3.4.3 Determine the maximum value of the
index.

Write an OC3 access specification:

ACCESS-TYPE = 'OC3'
OC3-INDEX-DFNO = TIS-INDEX-DFNC'

If OT-OCCURS-DEP-DFINO = 0

then

OC3-MAX-OCCURS = OT-NUM-OCCURS

16-20

DS 620341200

OC3-OCCURS-DEP-DFNO = 0

If OT-OCCURS-DEP-DFNO not = 0

then

OC3-MAX-OCCURS = 0
OC3-OCCURS-DEP-DFNO
OT-OCCURS-DEP-DFNO

5.3.4.4 Generate the loop construct for this

level of indexing.

Write an OC4 access specification:

ACCESS-TYPE = 'OC4'
OC4-INDEX-DFNO = TIS-INDEX-DFNO

5.3.5 For each OT-OCCURS-NEST entry identified in step
5.3.3, determine if the data field at the
current level of indexing was selected for
retrieval. Process as follows:

if OT-INDEX-LEVELS (OT-INDEX-l) not = current
level of indexing, continue at step 5.3.5 with
the next OT-OCCURS-NEST entry.

If all OT-OCCCURS-NEST entries identified in
step 5.3.3 have been processed, go to step
5.3.6.

Set OT-INDEX-2 = OT-STACK-USED (OT-INDEX-1)

Search the IS-ACTION-LIST for an entry where

IS-FLAG = 0 and
IS-RTNO = CURR-RTITO and
IS-DFNO = OT-DFNO

Set IS-FLAG = 1

Write an OC5 access specification:

ACCESS-TYPE ='C5'
OC5-DFNO IS-DFNO
OC5-IS-PTR : IS-INDEX
OC5-IDX-DFNO1 : TIS-INDEX-DFNO (1)
OC5-IDX-DFNO2 = TIS-INDEX-DFNO (2)
OC5-IDX-DFNO3 = TIS-INDEX-DFNO (3)

16-21

DS 62034120C

OC5-NUM-INDEXES = OT-INDEX-LEVELS
(OT-INDEX- 1)

5.3.6 Increment the current level of indexing,
TIS-INDEX.

If current level of indexing > 3
Go to step 5.7.

Else
Go to step 5.3.4.

5.4 Generate access specifications to update fields for modify
actions:

5.4.1 If IS-ACTION not = 'M', then go to Step 5.5.

5.4.2 Generate access specifications to convert update
data values using complex mapping algorithms:

For each COMPLEX-MAPPING-ALGORITHM-TABLE entry with

CMA-SUBTRANSACTION SUB-ID
CMA-RETR-UPD = "U"

5.4.2.1 Generate access specifications to move
update data values to algorithm input
parameters:
For each CMA-PARAMETER-ENTRY with

CMA-RTID = CURR-REC

For each IS-ACTION-LIST entry with

IS-RTID = CURR-REC and
IS-FLAG = 0 and
IS-MAPPED-TO-FLAG = 'Y' and
IS-ALG-ID = CMA-MOD-ID:

set IS-FLAG = 1

write a FG3 access specification:

ACCESS-TYPE = FG3'
FG3-ALG-ID = IS-ALG-ID
FG3-MOD-INST = CMA-MOD-INST
FG3-PARM-NO = IS-PARM-NO
FG3-IS-PTR IS-INDEX

5.4.2.2 Generate access specifications to

16-22

DS 620341200

move constant values to algorithm
parameters.

For each CMA-PARAMETER-ENTRY with
CMA-CONSTANT-VALUE filled in:

write a FG4 access specification:

ACCESS-TYPE = FG4'
FG4-CMA-CONSTANT = CMA-CONST-VAL
FG4-ALG-ID = CMA-MOD-ID
FG4 -MOD-INST = CMA-MOD-INST
FG4-PARM-NO = CMA-PARM-NO

5.4.2.3 Generate access specifications to call complex
mapping algorithms.

Write a CAL access specification:

ACCESS-TYPE = CAL'
CAL-ALG-ID = CMA-MOD-ID
CAL-PARM-COUNT = CMA-PARM-COUNT
CAL-MOD-INST = CMA-MOD-INST
CAL-MAP-DIR = CMA-RETR-UPD

5.4.2.4 Generate access specifications to
move output algorithm parameters to entire
records.

For each CMA-PARAMETER-ENTRY with
CMA-RT-NO = CURR-RTNO and
CMA-DF-NO not filled in:

write an FU2 access specification:

ACCESS-TYPE = FU2'
FU2-MOD-INST = CMA-MOD-INST

FU2-ALG-ID = CMA-MOD-ID
FU2-PARM-NO = CMA-PARM-NO
FU2-RTID = CURR-REC

5.4.2.5 Generate access specifications to move output
algorithm parameters to data fields.

For each CMA-PARAMETER-ENTRY with
CMA-RT-NO = CURR-RTINO and
CMA-DF-NO filled in:

16-23

DS 62034120(

write a FU access specification:

ACCESS-TYPE = FUl'
FUl-DFNO = CMA-DF-NO
FUl-ALG-ID = CMA-MOD-ID
FUI-MOD-INST = CMA-MOD-INST
FUI-PARN -NO COI-A-PARM-NO

5.4.3 Generate access specifications to move update data
values to data fields.

For each IS-ACTION-LIST entry with

IS-RTID = CURR-REC and
IS-FLAG = 0 and
IS-MAP-ALG-ID = blank and
IS-MAPPED-TO = Y'

set IS-FLAG = 1

Write an FU access specification:

ACCESS-TYPE = FU'
FUS-DFNO = IS-DFNO
FUS-IS-PTR = IS-INDEX
FUS-NULL = 1 if IS-DELETE-ACTION or

IS-NOT-MAPPED-TO
= 0 if IS-MODIFY-ACTION or

IS-MAPPED-TO
FUS-DF-TYPE = IS-DATA-TYPE

5.4.4 If a FU access specification was written in
Step 5.4.2, add an entry to the GROUP-TABLE for
CURR-REC:

GR-RTID = CURR-REC
GR-RTNO = CURR-RTNO
GR-KEYFLAG = RK-KEY-CODE if RK-RTID

CURR-REC
GR-DELETE-FLAG = blank
GR-SETID = LAST-SETID-USED
GR-LOCK = IS-LOCK

5.4.5 Go to Step 5.7.

5.5 Generate access specifications for delete actions:

5.5.1 If IS-ACTION not = D'
then go to Step 5.6.

16-24

DS 620341200

5.5.2 For the first IS-ACTION-LIST entry with IS-RTNO
CURR-RTNO and IS-FLAG = 0

Add an entry to the GROUP-TABLE:

GR-RTID = CURR-REC
GR-RTNO = CURR-RTNO
GR-KEYFLAG = RK-KEY-CODE if RK-RTID =

CURR-REC
= blank if RK-RTID not = CURR-REC

GR-SETID = LAST-SETID-USED
GR-LOCK = IS-LOCK

5.5.2.1 If all IS-ACTION-LIST entries with
IS-RTNO = CURR-RTNO have
IS-MAPPED-TO-FLAG 1Y1

Set GR-DELETE-FLAG 'RECORD'

5.5.2.2 Go to Step 5.7.

5.5.3 Delete mapped-to fields, retaining record if not
entirely mapped to.

5.5.3a Generate access specifications to convert update
data values using complex mapping algorithms:

Same as Step 5.4.2 except IS-LOCAL-VARIABLE is
replaced with NULL-VALUE from DBMS on Host (E20) in
Step 5.4.2.1.

5.5.3.1 For each IS-ACTION-LIST entry with
IS-RTNO = CURR-REC and
IS-FLAG = 'N' and
IS-MAPPED-TO-FLAG = 'Y' and
IS-MAP-ALG-ID = blank:

set IS-FLAG = 'Y'

write an FU access specification:

ACCESS-TYPE = 'FU I
FUS-DFNO = IS-DFNO
FUS-IS-PTR = IS-INDEX
FUS-NULL = 1 if

IS-DELETE-ACTIO or
IS-NOT-MAPPED-TO

= 0 it IS-MODIFY-ACTION

1 6-27 ,

DS 620341200

or IS-MAPPED-TO
FUS-DF-TYPE IS-DATA-TYPE

5.5.3.2 Set GR-DELETE-FLAG = 'FIELD'

5.5.4 Generate access specifications to move null values to
repeating data fields.

Search the OCCURS-TABLE for OT-OCCURS-NEST entries where

OT-SUBTRANS = current SUBTRANS-ID and
OT-MAPPED-TO = "N" and
OT-RTNO = current RT17O

If no such entries are found, go to step 5.7.

Divide the OT-OCCURS-NEST entries into groups, based on
OT-NESTID. All entries having the same OT-NESTID value
belong to the same group.

Perform steps 5.5.5 thru 5.5.7 for each group of
OT-OCCCURS-NEST entries identified.

5.5.5 Determine if there are entries for the current level of
indexing by checking the OT-INDEX-LEVELS field of the
OT-OCCURS-NEST entries identified in step 5.5.4.

If no OT-OCCURS-NEST entry has an OT-INDEX-LEVELS greater
than or equal to the current level of indexing, go to
step 5.7.

For steps 5.5.5.1 through 5.5.5.4, consider only one
OT-OCCURS-NEST entry from each group identified in step 5
which has an OT-INDEX-LEVELS greater than or equal to the
current level of indexing.

5.5.5.1 Establish the DFNO of the index for the current
level of indexing:

Set TIS-INDEX-DFNO = OT-DFNO.

Increment TIS-USED.

5.5.5.2 Determine the initial value of the index.

If OT-INDEX-DFNO = 0
Write an OCl access specification to set the
initial value of the index to 1:

ACCESS-TYPE l 'OCi'

16-2

DS 620341200

OCi-I1NDEX-DENO TIS-INDEX-DFNO

5.5.5.3 Determine the maximum value of the index-.

Write an 0C3 access specification:

ACCESS-TYPE = '0C3'
0C3-INDEX-DFNO = TIS-INDEX--DFNO

If OT-OCCURS-DEP-DFNO = 0
0C3-MAX-OCURS = OT-NUM-OCCURS
0C3-OCCURS-DEP-DFNO = 0

If OT-OCCURS-DEP-DFNO NOT = 0
0C3-MAX-OCCCURS = 0
0C3-OCCURS-DEP-DFNO = OT-OCCURS-DEP-DENO

5.5.5.4 Generate the loop construct for this level of
indexing.

Write an 0C4 access specification:

ACCESS-TYPE = '0C41
DC4-INDEX-DFNO = TIS-INDEX-DFNO

5.5.6 For each OT-OCCURS-NEST entry identified in step 5.5.4,
determine if the data field at the current level of
indexing was selected for retrieval. Process as follows:

If OT-INDEX-LEVELS (OT-INDEX-l) not = current level of
indexing, continue at step 5.5.6 with the next
OT-OCCURS-NEST entry.

If all OT-OCCURS-NEST entries identified in step 5.5.4
have been processed, go to step 5.5.7.

Set OT-INDEX-2 = OT-STACK-USED (OT-INDEX-l)

Search the IS-ACTION list for an entry where

IS-FLAG = 0 and
IS-RTNO = CURR-RT140 and

* IS-DFNO = OT-DENO (TOT-INDEX-l,
TOT-INDEX-2)

* Set IS-FLAG =1

Write an 0C6 access specification:

16 -27

DS 620341200

ACCESS-TYPE = 'OC6'
OC6-DFNO = IS-DFNO
OC6-INDEX-DFNO1 = TIS-INDEX-DFNO (1)
OC6-INDEX-DFNO2 = TIS-INDEX-DFNO (2)
OC6-INDEX-DFNO3 = TIS-INDEX-DFNO (3)
OC6-NUM-INDEXES = OT-INDEX-LEVELS

(OT-INDEX-I)
OC6-DATATYPE = IS-DATATYPE (IS-INDEX)

5.5.7 Increment the current level of indexing, TIS-INDEX.

If current level of indexing > 3
Go to step 5.7

Else
Go to step 5.5.5

5.6 Generate access specifications to update fields for
insert actions:

If IS-ACTION not 'I',
then generate an error message and abandon access
path.

5.6.1 Same as Step 5.5.2, setting GR-DELETE-FLAG =
blank.

5.6.1a Generate access specifications to convert
update data values using complex mapping
algorithms:

Same as Step 5.4.2 except that Step 5.4.2.1
is done for all IS-ACTION-LIST entries, not
just those with IS-MAPPED-TO-FLAG = 'Y', and
IS-LOCAL-VARIABLE is used only if
IS-MAPPED-TO-FLAG = 'Y', otherwise,
NULL-VALUE from DBMS on
Host (E20) is used.

5.6.2 For each IS-ACTION-LIST entry with
IS-RTNO = CURR-REC and
IS-FLAG = 'N' and
IS-MAP-ALG-ID = blank:

set IS-FLAG = 'Y'

write an FU access specification:

ACCESS-TYPE = IFUI
FUS-DFNC = IS-DFNO

16-2S

DS 620341200

FUS-IS-PTR = IS-INDEX
FUS-NULL = 1 if

IS-DELETE-ACTION or
IS-NOT-11APPED-TO

= 0 if IS-MODIFY-ACTION
or IS-MAPPED-TO

FUS-DF-TYPE = IS-DATA-TYPE

If IS-MAPPED-TO-FLAG = 'Y'
FUS-VARIABLE = LOCAL-VARIABLE

else
FUS-VARIABLE = Null from DBMS on host

5.6.3 Generate access specifications to move null values
to repeating data fields.

Search the OCCURS-TABLE for OT-OCCURS-NEST entries
where

OT-SUBTRANS = current SUBTRANS-ID and
OT-MAPPED-TO = "N" and
OT-RTNO = current RTNO

If no such entries are found, go to step 5.7.

Divide the OT-OCCURS-NEST entries into groups, based
on OT-NESTID. All entries having the same OT-NESTID
value belong to the same group.

Perform steps 5.6.4 thru 5.6.6 for each group of
OT-OCCCURS-NEST entries identified.

5.6.4 Determine if there are entries for the current level
of indexing by checking the OT-INDEX-LEVELS field of
the OT-OCCURS-NEST entries identified in step 5.6.3.

If no OT-OCCURS-NEST entry has an OT-INDEX-LEVELS
greater than or equal to the current level of
indexing, go to step 5.7.

For steps 5.6.4.1 through 5.6.4.4, consider only one
OT-OCCURS-NEST entry from each group identified in
step 5 which has an OT-INDEX-LEVELS greater than or
equal to the current level of indexln:.

5.6.4.1 Establish the DFNO of thie index for the
current level of indexing:

Set TIS-INDEX-DFNO = OT-DFNO.

16-2 '

Increment TIS-USED.

5.,4.2 Deternhint nta] Viuc c, tCe indeX.

If OT-INDEX-DFNO - 0
Write an OCI access specification to set the
initial value of the index to 1:

ACCESS-TYPE = 'OCi'

OCl-INDEX-DFNO = TIS-INDEX-DFNO

5.6.4.3 Determine the maximum value of the index.

Write an OC3 access specification:

ACCESS-TYPE 'OC3'
OC3-INDEX-DFNO TIS-INDEX-DFNO

If OT-OCCURS-DEP-DFNO = 0
OC 3-MAX-OCCURS = OT-NUM-OCCURS
OC3-OCCURS-DEP-DFNO = 0

If OT-OCCURS-DEP-DFNO NOT = 0
OC3-MAX-OCCURS = 0
OC3-OCCURS-DEP-DFNO = OT-OCCURS-DEP-DFNO

5.6.4.4 Generate the loop construct for this level

of indexing.

Write an OC4 access specification:

ACCESS-TYPE = OC '
DC4-INDEX-DFNO = TIS-INDEX-DFNO

5.6.5 For each OT-OCCURS-NEST entry identified in step
5.6.3, determine if the data field at the current
level of indexing wa5 selected for retrieval.
Process as follows:

If OT-INDEX-LEVELS (OT-NDEX-l) not = current level
of indexing, continue at step 5.6.5 with the next
OT-OCCURS-NEST entry.

It ai1 O -CCURS-NLSL entries identifjed in step
5.0.3 have been processed, go to step b.6.(6.

Set OT-INDEX-2 - OT-STACK-USED (OT-INDEX-l)

Search the IS-ACTION list for an entry where

DS 620341200

IS-FLAG = 0 and
IS-RTNO = CURR-RTNO and
IS-DFNO = OT-DFNO (TOT-INDEX-i, TOT-INDEX-2)

Set IS-FLAG = 1

Write an OC6 access specification:

ACCESS-TYPE = 'OC6'
OC6-DFNO = IS-DFNO
OC6-INDEX-DFNOl = TIS-INDEX-DFNO (1)
OC6-INDEX-DFNO2 = TIS-INDEX-DFNO (2)
OC6-INDEX-DFNO3 = TIS-INDEX-DFNO (3)
OC6-NUM-INDEXES = OT-INDEX-LEVELS (OT-INDEX-l)
OC6-DATATYPE = IS-DATATYPE (IS-INDEX)

5.6.6 Increment the current level of indexing, TIS-INDEX.

If current level of indexing > 3
Go to step 5.7

Else
Go to step 5.6.4

5.7 Generate access specifications to get fields for
later comparison with fields from other records.

For each IS-QUALIFY-LIST entry with
ISQ-RTNOL = CURR-REC and
ISQ-TYPE = '3' and
ISQ-LEFT = 'N' and
ISQ-RTNOL not = ISQ-RTNOR and
ISQ-RIGHT = 'N' and
ISQ-NTAP-ALG-IDL = blank

set ISQ-LEFT = 'Y'

write an FGl access specification:
ACCESS-TYPE = 'FGI'
FGI-RTID = ISQ-RTIDL
FGI-DFID = ISQ-DFIDL
FG1-DFNO = ISQ-DFNOL
FGI-ISQ-PTP = ISQ-INDEX
FGI-SIDE = ILI
FG1-DF-TYPE = ISQ-TYPEL

5.8 Process in the same manner as Step 5.7, but pick up fields
from the right sides of predicates:

1 6-

DS 620341200

For each IS-QUALIFY-LIST entry with
ISQ-RTNOR = CURR-REC and
ISQ-TYPE = '3' and
ISQ-RIGHT = 'N' and
ISQ-RTNOR not = ISQ-FTNOL and
ISQ-LEFT = 'N' and
ISQ-ALG-IDR = blank:

set ISQ-RIGHT = Y

write an FGl access specification:
ACCESS-TYPE ='EG1'
FGl-RTID = ISQ-RTIDR
FG1-DFID = IQ-DFIDR
FGl-DFNO = ISQ-DFNOR
FG1-ISQ-PTR = ISQ-INDEX
FGl-SIDE =1R
FG1-DF-TYPE =ISQ-TYPER

6. Find the next step in the access path, looking upw~ard.
Throughout, ST-MARK = IY' means that the SET-TABLE entry
has been accounted for in the access path.

6.1 Search the SET-TABLE for entries with ST-MARK 'N'14
and an ST-MEMBER(i) = CURR-REC.

If there is none,
go to Step 7

else
set LAST-SET-DOWN = blank.
set LAST-SETID-USED =ST-SETID

6.2 Determine which SET-TABLE entries are value-based.

6.2.1 Search the IS-ACTION-LIST for entries with
IS-FLAG = 'N' and
IS-RTNO = blank and
an IS-PSNO = an ST-RSNO from Step 6.1.

Record these IS-RSNOs.

6.2.2 Search the IS-QUALIFY-LIST for entries with
ISQ-LEFT ='11' and
ISQ-RTNOL =blank and
an ISQ-RSNO0L = an ST-RSNO f rom Step (J. 1.

Record these ISQ-RSNOLs.

6.2.3 Search the IS-QUALIFY-LIST for entries with
ISQ-RIGHT ='N' and
ISQ-RTNOR = blank and

16-32

DS 620341200

an ISQ-RSNOR = an ST-RSNO from Step 6.1.
Record these ISQ-RSNORs.

6.3 Process value-based sets.

For each RSNO represented in the set of qualifying
entries from Step 6.2:

6'3.1 Write an S01 access specification:

ACCESS-TYPE = 'SOl'
SS-SETID = ST-SETID
SS-RTID = ST-RTID

Note that this command will result in changed
run-unit currency only if the owner is found.
Currency will be reset in Step 6.3.11.

6.3.2 Set ST-MARK = 'Y' for the SET-TABLE entry with
ST-RSNO = RSNO.

6.3.3 Generate access specifications to compare the
set-values with variables according to the
where clause predicates:

For any IS-QUALIFY-LIST entry located in Step

6.2.2 because of its ISQ-RSNOL:

if ISQ-TYPE = 2,

generate an RS3 access specification:

ACCESS-TYPE = 'RS3'
RS3-VALUE = ISQ-STL-VALUE
RS3-OP = 0='

RS3-RTID = ISQ-RTIDL
RS3-ISQ-PTR = ISQ-INDEX
RS3-SIDE = ILI

concatenating the conditions from the
qualifying entries to form a single IF
statement,

set ISQ-LEFT : 'Y'.

6.3.4 Generate access specifications to either save
the set-values tor later comparison with fields
according to where clause predicates, or to do
the comparisons:

I - 3

DS 620341200

For any IS-QUALIFY-LIST entry located in Step
6.2.2 because of its ISQ-RSNOL:

if ISQ-TYPE =3 and
ISQ-RIGHT I N'

generate an FG2 access specification:

ACCESS-TYPE = 'FG21
FG2-VALUE = ISQ-STL-VALUE
FG2-ISA-PTR = ISQ-INDEX
FG2-SIDE =IL

set ISQ-LEFT = 'Y'.

if ISQ-TYPE = 3 and
ISQ-RIGHT = I

generate an RS3 access specification:

ACCESS-TYPE = 'RS31
RS3-VALUE = ISQ-STL-VALUE
RS3-OP = 1=

RS3-RTID = ISQ-ISQ-RTIDL
RS3-ISQ-PTR = ISQ-INDEX
RS3-SIDE =IL

set ISQ-LEFT = 'Y'.

6.3.5 Same as Step 6.3.4, except for the right-side

set values:

For any IS-QUALIFY-LIST entry located in Step
6.2.3 because of its ISQ-RSNQR:

if ISQ-TYPE = 3 and

ISQ-LEFT = 'N'1

generate an FG2 access specification:

ACCESS-TYPE = 'FG21
FG2-VALUE = ISQ-STR-VALUE
FG2-ISQ-PTR = ISQ-INDEX
FG2-SIDE = R

set ISQ-PIGHT = 'YI.

if ISQ-TYPE = 3 and

16-34

DS 620341200

ISQ-LEFT = 'Y'

generate an RS3 access specification:

ACCESS-TYPE = 'RS3'

RS3-OP = =

RS3-VALUE = ISQ-STR-VALUE
RS3-RTID = ISQ-RTIDR
RS3-ISQ-PTR = ISQ-INDEX
RS3-SIDE = RI

set ISQ-RIGHT = 'Y'.

6.3.6 If IS-ACTION not = 'S', '1', e2, or 1K', then
go to Step 6.3.7.

For each IS-ACTION-LIST entry located in Step
6.2.1 because of its IS-RSNO:

generate an RF2 access specification, to pick up the
set value:

ACCESS-TYPE = 'RF2'
RF2-VALUE = IS-ST-VALUE
RF2-IS-PTR = IS-INDEX

set IS-FLAG = 'Y'.
add IS-SIZE and IS-ND to NEXT-POSITION

Go to Step 6.3.11.

6.3.7 If IS-ACTION not = 'M'
then go to Step 6.3.8.

Generate code for the following logic:
If the set entry's value = IS-LOCAL-VARIABLE

insert into that set
else if already a member in that set

disconnect from the set.
For each IS-ACTION-LIST entry located in

Step 6.2.1 because of its IS-RSNOs:

generate an IT2 access specification:
ACCESS-TYPE = 'IT2'
IT2-VALUE = IS-ST-VALUE
IT2-OP = = '

IT2-IS-PTR = IS-INDEX
IT2-ISQ-PTR = 0

16-35

DS 620?-; 1200

generate an SI access specification:
ACCESS-TYPE = 'SI I
SI-SETID = ST-SETID
SI-RTID = ST-RTID

generate an IE access specification:
ACCESS-TYPE = 'IE I

generate an S01 access specification:
ACCESS-TYPE = 'SOl'
SS-SETID = ST-SETID
SS-RTID = ST-STID

generate an SD access specification:
ACCESS-TYPE = 'SD'
SD-SETID = ST-SETID
SD-RTID = ST-RTID

generate an EI access specification:
ACCESS-TYPE = 'EI'

generate another EI access specification:

ACCESS-TYPE = 'EI'

set IS-FLAG = 'Y'.

Go to Step 6.3.11.

6.3.8 If IS-ACTION not = 'D'
go to Step 6.3.9.

Generate code for the following logic:
If a member in the set,

disconnect it.
For each IS-ACTION-LIST entry located in
Step 6.2.1 because of its IS-RSNOs:

generate an SOl access specification:
ACCESS-TYPE = 'SOl'
SS-SETID = ST-SETID
SS-RTID = ST-RTID

generate an SD access specification:
ACCESS-TYPE = 'SD'
SD-SETID = ST-SETID
SD-RTID = ST-RTID

generate an EI access specification:
ACCESS-TYPE = 'EI'

16-36

DS 620341200

set IS-FLAG = 'Y'.

Go to Step 6.3.11.

6.3.9 If IS-ACTION not = 'I',
issue an error message.

Generate code for the following logic:
If the set entry's value = IS-LOCAL-

VARIABLE
insert into that set.

For each IS-ACTION-LIST entry located in
Step 6.2 because of its IS-RSNOs:

generate an IT2 access specification:
ACCESS-TYPE = 'IT2'
IT2-VALUE = IS-ST-VALUE
IT2-OP = =1

IT2-IS-PTR = IS-INDEX
IT2-ISQ-PTR = 0

generate an SI access specification:
ACCESS-TYPE = 'SI I
SI-SETID = ST-SETID
SI-RTID = ST-RTID

generate an EI access specification:
ACCESS-TYPE = 'EI

Set IS-FLAG = 'Y'

6.3.10 (This Step was removed.)

6.3.11 Close the open conditional from Step 6.3.1
for this record set and reset the currency
by doing the following:

Write an EI access specification:
ACCESS-TYPE = 'EI 1

Write an RC access specification:
ACCESS-TYPE = 'RC I

RCS-RTID = CURR-REC

6.4 Process relation-class-based sets.

Find any entries that specify traversal of the
identified record sets and change of currency, by
doing the following:

16-37

DS 620341200

Search the SET-TABLE for an entry with
ST-MEMBER(l) = CURR-REC and
ST-HARK = 'N'.

If one is found, then:

6.4.1 Set ST-MARK = 'Y1

6.4.2 Write an S02 access specifi2ation:
ACCESS-TYPE = 'S02'
SS-SETID = ST-SETID
SS-RTID = ST-RTID

Note that this command will result in changed
run-unit currency if the owner is found. The
currency will not be reset.

6.4.3 Push CURR-REC onto the RTID-STACK, set CURR-
REC = ST-OWNER, from the SET-TABLE entry
with ST-RSNO = IS-RSNO from Step 6.4.

6.5 (This Step was changed to Step 6.4.4.)

6.6 Go to Step 5.

7. Return one level downward in the path, by doing the
following:

7.1 If the RTID-STACK is empty (i.e. if the path has not
gone upward) go to Step 8.

7.2 Pop the RTID-STACK into CURR-REC
Write an RC access specification:

ACCESS-TYPE = 'RC '
RCS-RTID = CURR-REC

7.3 Go to Step 6.

8. The access path has now been constructed upwards from the
candidate port record and we can look downward.

8.1 Search the SET-TABLE for entries with
ST-fARK = 'N' and
ST-OWNER = CURR-REC

If there is none, go to Step 9.

8.2 Search the IS-ACTION-LIST for entries with

IS-FLAG = 'N' and

16-33

DS 620341200

IS-RTNO = blank and
an IS-RSNO(i) = an ST-RSNO from Step 8.1

Record these RSNOs.

Search the IS-QUALIFY-LIST for entries with
ISQ-LEFT = 'N' and
ISQ-RTNOL = blank and
an ISQ-RSNOL(i) = an ST-RSNO from Step 8.1

Record these RSNOs.

Search the IS-QUALIFY-LIST for entries with
ISQ-RIGHT = 'N' and
ISQ-RTNOR = blank and
an ISQ-RSNOR(i) = an ST-RSNO from Step 8.1

Record these RSNOs.

8.3 For each RSNO in the set recorded in Step 8.2:

8.3.1 If ST-TOTAL-NUM-MEMBERS = ST-NUM-MEMBERS in the
SET-TABLE entry with ST-RSNO = RSNO for
this iteration through Step 8.3

write an SMI access specification:
ACCESS-TYPE = 'SMI'
SS-SETID = ST-SETID
SS-RTID = ST-RTID

else write an SMl access specification:
ACCESS-TYPE = 'SMI'
SS-SETID = ST-SETID
SS-RTID = ST-RTID

Note that ST-NUM-MEMBERS = ST-TOTAL-NUN-MEMBERS
or one. The SMl access specification will
result in changed run-unit currency if at least
one member is found. Currency will be reset in
Step 8.3.8.

8.3.2 through 8.3.11

Perform Steps 6.3.2 through 6.3.11, replacing
all references to:

Step 6.2 by Step 8.2
6.2.1 8.2.1
6.2.2 8.2.2
6.2.3 8.2.3
6.3 8.3
6.3.1 8.3.1

16-39

DS 620341200

6.3.2 8.3.2
6.3.3 8.3.3
63.4 834
6.3.5 3.3.5
6. 3 .6 8 .3 .6
6. 3.7 8. 3 7
6. 3 .8 8. 3 8
6. 3 .9 8. 3 .9
6.3.10 8.3.10
6.3.11 8.3.11

8.4 Search for entries that specify set traversal and

change of currency, by doing the following:

For each SET-TABLE entry found in Step 8.1:

8.4.a Determine whether the set needs to be
traversed.

Find all the IS-QUALIFY-LIST entries with either
ISQ-RTNOL = CURR-REC and
ISQ-TYPE = '3' and
ISQ-RTNOR = any ST-MEMBER in any of

the SET-TABLE entries
from Step 8.1 and

ISQ-RIGHT = 'N'
or

ISQ-RTNOR = CURR-REC and
ISQ-TYPE = '3' and
ISQ-RTNOL = any ST-MENBER in any of

the SET-TABLE entries
from Step 8.1 and

ISQ-LEFT ='N'.

If any such IS-QUALIFY-LIST entries are found,
proceed to Step 8.4.1 with this SET-TABLE entry.
If no such IS-QUALIFY-LIST entries are found,
continue with Step 8.4.a for the next SET-TABLE
entry.

8.4.1 Set ST-MARK = 'Y' for the SET-TABLE entry
with ST-RSNO ISQ-ISNOL(1).

8.4.2 If ST-TOTAL-NUM-MEMBERS = ST-NUM-MEMBERS
write an SM2 access specification:

ACCESS-TYPE = 'SM2'
SS-SETID = ST-SETID
SS-RTID = ST-RTID

16-40

DS 620341200

else write an SM2 access specification:
ACCESS-TYPE = 'SM2'
SS-SETID = ST-SETID
SS-RTID = ST-RTID

Note that ST-NUM-MEMBERS = ST-TOTAL-NUM-MEMBERS
or one. This command will change run-unit
currency if at least one member is found.
Currency will not be reset.

8.4.3 Set LAST-SET-DOWN = SS-SETID.
Set LAST-SET-USED = SS-SETID.

8.4.4 Same as Step 8.3.12.

8.5 If an SM access specification was written in Step 8.4
set CURR-REC = ST-MEMBER(l).

Go to Step 5.

9. Generate access specifications to perform the modify,
insert or delete actions, or to write selected results to an
output file.

9a.l If CASE-TYPE = 6'
Write a IIF access specification:

ACCESS-TYPE = IIF'

9a.2 If IS-ACTION = 'D' or 'M' and CMA-SWITCH ='Y'

Write a 'CIF' access specification:
ACCESS-TYPE = 'CIF'

9a.3 If IS-ACTION = S', 1', 2', or K'
Write a PIO access specification:

ACCESS-TYPE = PIO'

9a.4 ELSE
For each entry in the GROUP-TABLE

9a.4.1 Write a RC access specification:
ACCESS-TYPE = RC'
RCS-RTID = CURR-REC

'a.4.2 Write an MR2 access specification:
ACCESS-TYPE = MR2'

MR2-RTNO = GR-RTNO
MR2-RTID = GR-RTID

9a.4.3. It IS-ACTION M'

16-41

DS 62034120

If GR-KEYFLAG = 1
Write a RUK access specification:

ACCESS-TYPE = RUE'
REC-SELECT-SPEC-PTR = RK-INDEX

Else
Write a RU2 access specification:

ACCESS-TYPE = RU2'
RU2-RTID = GR-RTID

9a.4.4 If IS-ACTION D'
If GR-DELETE-FLAG : FIELD'

Process same as 9a.4.3
Else
If GR-KEYFLAG = U' or D'

Write a RDK access specification.
REC-SELECT-SPEC-PTR = RK-INDEX

Else
Write a RD2 access specification:

ACCESS-TYPE = RD2'
RD2-RTID = GR-RTID
RD2-SETID = GR-SETID

9a.4.5 If IS-ACTION = I'
If GR-KE.YFLAG = U' or D'

Write a RIK access specification:
ACCESS-TYPE = 'RIK'
REC-SELECT-SPEC-PTR = RK-INDEX

Else
Write a R12 access specification:

ACCESS-TYPE = R12'
R12-RTID = GR-RTID

9a.5 Write an EP access specification:
ACCESS-TYPE = EP'

10. Return to PRE13 to have PRE7 invoked.

Constraints

Note that this algorithm requires that if a CS AUC maps to more
than one IS record set, then those record sets must all have the
same owner record type and the same member record types. Not being
a participant in any of the mapped-to record sets cannot map t3 an
AUC value.

If any conditions in the IS-QUALIFY-LIST for this subtransaction
participate in complex mapping algorithms, the entire NDr'L .,here
clause must be evaluated at the conceptual schema level.

16-42

DS 620341200

16-43

DS 620341200

16.3 Outputs

* ACCESS PATH TABLE *

* CONTAINS THE ACCESS PATH FOR ONE SUBTRANSACTION *
* FOR A NDML REQUEST. *

01 ACCESS-PATHS.
03 AT-MAX PIC 999 VALUE 200.
03 AT-USED PIC 999.
03 ACCESS-TYPE-ENTRY OCCURS 200 INDEXED BY AT-INDEX.

05 ACCESS-TYPE-CODE PIC XXX.
88 CAL-TYPE VALUE "CAL"
88 CIF-TYPE VALUE "CIF".
88 EI-TYPE VALUE "EI "

88 EP-TYPE VALUE "EP "
88 FGI-TYPE VALUE " FGI"
88 FG2-TYPE VALUE "FG2".
88 FG3-TYPE VALUE FGjI'
88 FG4-TYPE VALUE "FG4".

88 FU-TYPE VALUE "FU "
88 FUl-TYPE VALUE "FUl".
88 FU2-TYPE VALUE "FU2"
88 FU3-TYPE VALUE "FU3"
88 FU4-TYPE VALUE "FU4".
88 IE-TYPE VALUE "IE ".
88 IIF-TYPE VALUE "IIF".
88 IT2-TYPE VALUE "IT2".
88 MRI-TYPE VALUE "MRI"
88 1R2-T'Y*PE VALUE "MR2"
88 T.'S-TYPE VALUE ","VS
88 NXS-TYPE VALUE "NXS"
88 OCi-TYPE VALUE "OCi".
88 OC2-TYPE VALUE "OC2".
88 OC3-TYPE VALUE "OC3".
88 OC4-TYPE VALUE "OC4".
88 OC5-TYPE VALUE "OC5".
88 OC6-TYPE VALUE "OC6".
88 OU4-TYPE VALUE "OU4".
88 OUS-TYPE VALUE "OU5".
8(3 PIO-TYPE VALUE "PIO".
88 PA-TYPE VALUE "RA "
88 RAI-TYPE VALUE "RAI"
88 RC-TYPE VALUE "RC "

88 RDK-TY PE VALUE "RDK".
88 PD2-TY .PE VAI.7E "RD2"

DS 620341200

Eb RF1-TYPE VALUE "RF1".
88 RF2-TYPE VALUE "RF2"
88 RF3-TYPE VALUE "RF3"
SR RIK-TYPE VALUE "RIK".
88 R12-TYPE VALUE "R12".
88 RK-TYPE VALUE "Rh"?.
88 RKI-TYPE VALUE "RK1"
88 RK2-TYPE VALUE "RK2"
88 RK3-TYPE VALUE "RK3".
88 RS1-TYPE VALUE "RSI".
88 RS3-TYPE VALUE "RS3".
88 RS4-TYPE VALUE "RS4".
88 RS5-TYPE VALUE "RS5".
88 RUK-TYPE VALUE "RUK".
88 RU2-TYPE VALUE "RU2"
88 SD-TYPE VALUE "SD "
88 SI-TYPE VALUE "SI "

88 SMI-TYPE VALUE "SMI".
88 SM2-TYPE VALUE "SM2".
88 SOl-TYPE VALUE "SOl".
88 S02-TYPE VALUE "S02".
88 UIF-TYPE VALUE "UIF".

05 REC-SELECT-SPEC-PTR PIC 999.

16-45

DS 6203-41200

* ACCESS PATH INFORMATION TABLE

* THIS IS A COLLECTION OF INFORMATION STORED IN A
* NUMBER OF VARIOUS TABLES USED BY THE ACCESS PATH TABLE
* AND THE GENERIC CODASYL TABLE. SEE CDMP SPEC, PRE6

* APINFO.INC
01 AP-INFO-TABLE.

02 API-MAX PIC 9(3) VALUE 200.
02 API-USED PIC 9(3) .
02 API-ALL-TABLES-DEF OCCURS 200 TIMES

INDEXED BY API-INDEX.
03 API-DEF.

05 FILLER PIC X(112).

* REL 2.3 Complex Mapping algorithm call

03 CAL-SPEC REDEFINES API-DEF.
05 CAL-ALG-ID PIC X(8).
05 CAL-MOD-INST PIC 999.
05 CAL-PARM-COUNT PIC 999.

* Old: Move data field to ISQ variable

03 FGI-SPEC REDEFINES API-DEF.
05 FGI-RTID PIC X(30).
05 FGI-DFNO PIC 9(6).
05 FGI-DFID PIC X(30).
05 FGI-ISQ-PTR PIC 999.
05 FGI-SIDE PIC X.
05 FGI-DF-TYPE PIC X.

* Old: Move set value to ISQ variable

03 FG2-SPEC REDEFINES API-DEF.
05 FG2-VALUE PIC X(30).
05 FG2-ISQ-PTR PIC 999.
05 FG2-SIDE PIC X.

* Old: Move runtime var/value to input CMA parameter

03 FG3-SPEC REDEFINES API-DEF.

05 FG3-ALG-ID PIC X(8).

16-46

DS 620341200

05 FG3-MOD-INST PIC 999.
05 FG3-PARM-NO PIC 999.
05 FG3-IS-PTR PIC 999.

" Rel 2.3: Move constant to CMA parameter

03 FG4-SPEC REDEFINES API-DEF.
05 FG4-ALG-ID PIC X(8).
05 FG4-MOD-INST PIC 999.
05 FG4-PARM-NO PIC 999.
05 FG4-CONSTANT PIC X(30).

* Old: Move update value or null to data field

03 FUS-SPEC REDEFINES API-DEF.
05 FUS-DFNO PIC 9(6).
05 FUS-IS-PTR PIC 999.
05 FUS-NULL PIC X.
05 FUS-DF-TYPE PIC X.

* Rel 2.3: Move output CMA parameter to data field

03 FUl-SPEC REDEFINES API-DEF.
05 FUI-DFNO PIC 9(6).
05 FUI-ALG-ID PIC X(8).
05 FUI-MOD-INST PIC 999.
05 FUl-PARM-NO PIC 999.

* Rel 2.3: Move output CMA paramater to record

03 FU2-SPEC REDEFINES API-DEF.
05 FU2-RTID PIC X(30).
05 FU2-ALG-ID PIC X(8).
05 FU2-MOD-INST PIC 999.
05 FU2-PARM-NO PIC 999.

* Rel 2.3: Move data field to input CMA parameter

03 FU3-SPEC REDEFINES API-DEF.
05 FU3-RTID PIC X(30).
05 FU3-DFNO PIC 9(6).
05 FU3-DFID PIC X(30).
05 FU3-DF-TYPE PIC X.
05 FU3-IS-PTR PIC 999.
05 FU3-ALG-ID PIC X(8).
05 FU3-MOD-INST PIC 999.
05 FU3-PARM-NO PIC 999.

* Rel 2.3: Move record to input CMA parameter

1 -

DS 620341200

03 FU4-SPEC REDEFINES API-DEF.
05 FU4-RTID PIC X(30).
05 FU4-ALG-ID PIC X(8).
05 FU4-MOD-INST PIC 999.
05 FU4-PARM-NO PIC 999.

* Old: If set-value op ISQ variable

03 IT2-SPEC REDEFINES API-DEF.
05 IT2-OP PIC XX.
05 IT2-VALUE PIC X(30).
05 IT2-ISQ-PTR PIC 999.
05 IT2-IS-PTR PIC 999.

* Rel 2.3: Move record from schema to ws and vice versa

03 MR-SPEC REDEFINES API-DEF.
05 MR-RTNO PIC 9(6).
05 MR-RTID PIC X(30).

* Rel 2.3: Move runtime value to ISQL variable

03 MVS-SPEC REDEFINES API-DEF.
05 MVS-ISQ-PTR PIC 999.

* Rel 2.3: Set the index data field to a value of 1.

03 OCI-SPEC REDEFINES API-DEF.
05 OCI-INDEX-DFNO PIC 9(6).

* Rel 2.3: Move variable containing the number of
* occurrences or occurs depending on value to
* a local variable.

03 OC2-SPEC REDEFINES API-DEF.
05 OC2-INDEX-DFNO PIC 9(6).
05 OC2-ISQ-PTR PIC 999.

* Rel 2.3: Move data field or value containing the number
* of occurrences or occurs depending on value to
* local variable.

03 OC3-SPEC REDEFINES API-DEF.
05 OC3-INDEX-DFNO PIC 9(6).
05 OC3-OCCURS-DEP-DFNO PIC 9(6).
05 OC3-MAX-OCCURS PIC 99.

* Rel 2.3: Determine if the current index is greater than

16-43

DS 620341200

the maximumn index value.

03 0C4-SPEC REDEFINES API-DEE.
05 0C4-INDEX-DFNO PIC 9(6).

" Rel 2.3: Move an indexed field to the results record.

03 0G5-SPEC REDEFINES API-DEE.
05 0C5-NUM-INDEXES PIG 99.
05 0C5-IDX-DFN0l PIG 9(6).
05 0C5-IDX-DFNO2 PIC 9(6).
05 0G5-IDX-DFNO3 PIC 9(6).
05 OC5-DENO PIC 9(6).
05 0C5-IS-PTR PIG 999.

" Rel 2.3: Move a null value to an indexed field

03 0G6-SPEC REDEFINES API-DEE.
05 0C6-NUM-INDEXES PIG 99.
05 0C6-IDX-DFNOl PIG 9(6).
05 0G6-IDX-DFNO2 PIG 9(6).
05 0G6-IDX-DFNO3 PIC 9(6).
05 0C6-DFNO PIG 9(6).
05 OGE-DATATYPE PIG X.
05 0G6-IS-PTR PIG 999.

" Rel 2.3: Move GMA output parameter to tag.

03 0U4-SPEG REDEFINES API-DEF.
05 0U4-ALG-ID PIG X(8).
05 0U4-MOD-INST PIG 999.
05 0U4-PARM-NO PIG 999.
05 0U4-TAG-NO PIG 9(6).

" Rel 2.3: Move retrieved data field to tag.

03 0U5-SPEG REDEFINES API-DEE.
05 OU5-DE-TYPE PIG X.
035 0U5-RTID PIG X(30).
05 0U5-DFNO PIG 9(6).
05 OU5-DEID PIG X(30).
05 OU5-TAG-NO PIG 9(6).

* Old: Area sweep access path

03 RA-SPEC REDEFINES API-DEE.
05 RAS-RTID PIG X(30).
05 RAS-AREAID PIG X(30).

16-49

DS 62034120C

* Old: Reset currency

03 RC-SPEC REDEFINES API-DEF.

05 RCS-RTID PIC X(30).

* Old: Delete next record

03 RD2-SPEC REDEFINES API-DEF.
05 RD2-RTID PIC X(30).
05 RD2-SETID PIC X(30).

* Old: Move field to result rec

03 RFI-SPEC REDEFINES API-DEF.
05 RFl-RTID PIC X(30)
05 RFl-DFNO PIC 9(6).
05 RFl-DFID PIC X(30).
05 RFl-DF-TYPE PIC X.
05 RFl-IS-PTR PIC 999.

* Old: Move value to result rec

03 RF2-SPEC REDEFINES API-DEF.
05 RF2-VALUE PIC X(30).
05 RF2-IS-PTR PIC 999.

* Rel 2.3: Move CMA parameter to result rec

03 RF3-SPEC REDEFINES API-DEF.
05 RF3-ALG-ID PIC X(8).
05 RF3-MOD-INST PIC 999.
05 RF3-PARM-NO PIC 999.
05 RF3-IS-PTR PIC 999.

* Old: Insert next record

03 R12-SPEC REDEFINES API-DEF.

05 R12-RTID PIC X(30).

* Rel 2.3: Start loop for multiple values of key

03 RKI-SPEC REDEFINES API-DEF.
05 RKl-LOOP-MAX PIC 99.

* Rel 2.3: Move nth value to key

03 RK2-SPEC REDEFINES API-DEF.

05 RK2-RTID PIC X(30).
05 RK2-RK-INDEX PIC 999.

16-50

05 RK2-LOOP-COUNT
PIC 99. D 2310

05 RK2-DFID PIC X(30).

" Old: If not dfid-left op dfid-right

03 RSl-SPEC REDEFINES API-DEF.
05 RSl-DFNOL PIC 9(6).
05 RSl-DF-TYPEL PIC X.
05 RSl-OP PIC XX.
05 RSl-DFNOR PlC 9(6).
05 RSl-DF-TYPER PIC X.

* Old: If not value op variable

03 RS3-SPEC REDEFINES API-DEE.
05 RS3-RTID PIC X:(30).
05 RS3-VALUE PIC X(30).
05 RS3-OP PIC XX.
05 RS3-ISQ--PTR PIC 999.
05 RS3-SIDE PIC X.

" Old: If not dfid op ISQ-variable

03 RS4-SPEC REDEFIN4ES API-DEF.
05 P54-OP PIC xx.
05 RS4-DFNO PIC 9(6).
05 RS4-ISQ-PTR PIC 999.
05 RS4-SIDE PIC x.
05 RS4-DF-TYPE PIC X.

" Rel 2.3: If check for ORed conditions in sam~e record.

03 RS5-SPEC REDEFINES API-DEE.
05 RS5-DF14O PIC 9(6).
05 RS5-OP PIC XX.
05 RS5-ISQ-PTR PlC 999.
05 RS5-IF-OR PIC XX.
05 P55-SIDE PIC X.
05 P55-DE-TYPE PIC X.

" Old: Update next record

03 RU2-SPEC REDEFINES API-DEE.
05 PU2-RTID PIC X(30).

" Old: Handles SMi, SM2, S01, S02, SD, SI

03 SET-SPEC REDEFINES API-DEE.

16-51

DS 62034120r)

05 SS-PTTD PIC X(30).
05 SS-SETID PIC X(30).

*REL 2.3: Handles Union Discriminator

03 UIF-SPEC REDEFINES API-DEF.
05 UIF-RTNO PIC 9(6).

DS 620341200

16.4 Internal Requirements

1. A temporary stack to hold the index DFNOs for 3 levels
of repeating fields.

01 TEMP-INDEX-STACK.
03 TIS-MAX PIC 99.
03 TIS-USED PIC 99.
03 TIS-EWTRY OCCURS 3 TIMES

INDEXED BY TIS-INDEX.
05 TIS-INDEX-DFNO PIC 9(6).

2. Table used first to hold all the unique record types
associated with the subtransaction; used to hold the
record types which must be updated, deleted or inserted
at the end of each iteration of the access path.

01 GROUP-TABLE.
03 GR-MAX PIC 99.
03 GR-USED PIC 99.
03 GR-ENTRY OCCURS 50 TIMES

INDEXED BY GR-INDEX.
05 GR-RTID PIC X(30).
05. GR-TRNO PIC 9(6).
05 GR-KEYFLAG PIC X(6).
05 GR-SETID PIC X(30).
05 GR-LOCK PIC.

3. Internal switches and variables:

CURR-REC = RTID of current record type
NEXT-POSITION = temporary pointer to next open position

in buffer
LAST-SET-DOWN = setid for last set type traversed

downward
LAST-SET-USED = setid of set type being traversed
CURR-RTNO = RTNO of current record type

16-53

DS 6203412U)0

SECTION 17

FUNCTION PRE7 - TRANSFORM IS ACCESS PATH/GENERIC DML

The IS Access Path/Generic DML Transformer is invoked at
precompile-time. It transforms IS Access Path specifications
produced by PRE6 - Select IS Access Path into proper code
structures to traverse the local databases. The generic DML
will later be transformed to the DML of a particular DBMS (e.g.
TOTAL, IMS, IDMS) by the Generic/Specific DML Transformers of
the Request Process Generators, PRE9. PRE7 is called by PRE5.

The IS Access Path/Generic DML Transformer builds DML code
in the form of nested "C-structures." A stack is employed to
retain the bottoms of the C-structures.

17.1 Inputs

An IS Access Path through a single local database generated
by function PRE6 - Select IS Access Path. This input is the
structure ACCESS-PATH and the accompanying tables specified as
outputs in the PRE6 development specification, including the
RECORD-KEY-TABLE.

17.2 Processing

1. If NDML-NO = 1, then set the loop labeler: i = 0.

2. Transform the port specification.

2.1 If ACCESS-TYPE not = RK', then go to Step 2.5a.

2.2 Set RK-INDEX = REC-SELECT-SPEC-PTR.

2.3 If RK-KEYCODE (RK-INDEX) not = U', then go to Step
2.4. Generate DML for an unique primary key for which
a single value was specified:

2.3.1 Find record key components in the
RECORD-KEY-TABLE:

For j = 1 to RK-DF-USED (RK-INDEX):
Set RS2-DFID(j) = RK-DFID(RK-INDEX,j)
RS2-VARIABLE = ISQL-VAR-n where
n = RK-ISQ-PTR or RK-IS-PTR

2.3.2 Generate DML:

17-1

D , (1 0 3

LOOP. i
FFR rs2-rtii,

jrs2-dfid(j)=rs2-variable(j) ,

r S2-10 c]
I FRECNOTFOUND
EXITLOOP. 1
ENDIF

2.3.3 Push onto DML stack:

ENDLOOP. 1

2.3.4 Go to Step 3.

2.4 If RK-KEYCODE (RK-INDEX) not = 'DI, then generate an
error message and abandon the access path.

Generate DML for a duplicate key for ;,:hich a singl~e
value was specified:

2.4.1 Increment the loop labeler: i =i-

2.4.2 Find record key components in the
RECORD-KEY-TABLE

Set RS2-DFID(j) = RK-DFID(K-INDEX),j)
RS2-VARIABLE = ISQL-VAR-n where
n = RI-ISQ-PTR or RK-IS-PTR

2.4.3 Generate DML:

LOOP. i-l
FER rs2-rtid,

(rs2-dfid(j)=rs2-variable(j)),
rs2-lock

LOOP. i
I FREC14OTFOU14D
EXITLOOP. 1
EN4DIF

2.4.4 Push onto DML stack:

ENDLOOP. 1
FNR rs2-rtid,

jrs2-dfid(j)=rs2-variable(j) ,

r s2-10 ckI

Note that the FNR is now on top ofl the stack:.

17 -2

DS 620341200

2.4.5 Go to Step 3.

2.5a If ACCESS-TYPE not = 'RKl', then go to Step 2.5.

Generate DML for a primary or secondary key for which
multiple values were specified:

2.5a.1 Set RK-INDEX = REC-SELECT-SPEC-PTR

2.5a.2 If RK-KEYCODE (RK-INDEX) =U1

generate DML:

MV Z
LOOP. i
IFi rkl-loop-max

2.5a.3 If RK-KEYCODE (RK-INDEX) =D

generate Dr4L:

LOOP. i
MV Z

Increment the loop labeler: a. = a. + 1

LOOP.ia
IFl rkl-loop-max

2. 5a.4 Transform 'RK2' access specifications:

For each 'RK2' access specification
generate DT~IL:

IF2 rk2-loop-count
MVK rk2-rk-index

2.5a.5 Transform the 'RK3'1 access specification:

2.5a.5.1 Find the record key components in
the RECORD-KEY-TABLE:

For j = 1 to RK-DF-USED(RK-INDEX):
Set RS2-DFID(j) = RK-DFID(RK-INDEX,j)
RS2-VARIABLE = ISQL-%7AR-n

where
n = RK-ISQ-PTR

2.5a.5.2 If RK-KEYCODE(RK-INDEX) U-
generate DNL:

17-3

DS 62034120C)

FFR rs2-rtid,
(rs2-dfid(j) :
rs2-variable(j)

IFRECNOTFOUND
EXITLOOP. i
ENDIF

2.5a.5.3 If RK-KEYCODE(RK-INDEX) =D
generate DML:

FFR rs2-rtid,
(rs2-dfid(j) =
rs2-variable((j
rs2 -lock

I FRECNOTFOUND
EXITLOOP. i
ENDIF

Push onto DNL stack:

ENDLOOP.i - 1
ENDLOOP. i
FNR rs2-rtid,

(rs2-dfid(j) =
rs2-variable(j)
rs2-lock

Note that FNR is now on top of the

stack.

2.5a.5.4 Go to Step 3.

2.5 If ACCESS-TYPE not = RA' or RAI', then generate an
error message and abandon the access path.

Generate DML for an area scan:

2.5.1 Increment the loop labeler: i=i+l

2.5.2 Generate DML:

LOOP. i-I
FFA ras-rtid, ras-areaid, ras-lock
LOOP. i
IFRECNOTFOUND
EXITLOOP. i
ENDIF

2.5.3 Push onto DML stack:

17-4

DS 620341200

ENDLOOP.i-i
ENDLOOP.i

2.5.4 If ACCESS-TYPE = RA'

Push onto DML stack:

FNA ras-rtid, ras-areaid, ras-lock

Note that the FNA is now on top of the stack if
ACCESS-TYPE =RA' and ENDLOOP.i is on top if
ACCESS-TYPE = 'RAI'.

3. Transform the rest of the access specifications for the
path, by doing the following for each of the
specifications in the path:

If ACCESS-TYPE = CALI, go to Step 3.18.
If ACCESS-TYPE = CIF', go to Step 3.21.
If ACCESS-TYPE = EI , go to Step 3.19.1.
If ACCESS-TYPE = EP , go to Step 3.19.2.
If ACCESS-TYPE = FG1, go to Step 3.14.1.
If ACCESS-TYPE = FG21, go to Step 3.14.2.
If ACCESS-TYPE = FG31, go to Step 3.14.3.
If ACCESS-TYPE = FG4', go to Step 3.14.4.
If ACCESS-TYPE = FU ', go to Step 3.15.
If ACCESS-TYPE = FU1, go to Step 3.15.a.
If ACCESS-TYPE = FU21, go to Step 3.15b.
If ACCESS-TYPE = FU31, go to Step 3.15.c.
If ACCESS-TYPE = FU41, go to Step 3.15.d.
If ACCESS-TYPE = IE 1, go to Step 3.17.
If ACCESS-TYPE = IIF, go to Step 3.20.
If ACCESS-TYPE = IT1', go to Step 3.16.1.
If ACCESS-TYPE = IT21, go to Step 3.16.2.
If ACCESS-TYPE = MR1', go to Step 3.22.1.
If ACCESS-TYPE = MR21, go to Step 3.22.2.
If ACCESS-TYPE = MVS', go to Step 3.14.5.
If ACCESS-TYPE = 'NXS, go to Step 3.23.
If ACCESS-TYPE = OC1', go to Step 3.24.1.
If ACCESS-TYPE = OC2', go to Step 3.24.2.
If ACCESS-TYPE = OC3', go to Step 3.24.4.
If ACCESS-TYPE = OC4', go to Step 3.24.4.
If ACCESS-TYPE = OC5', go to Step 3.24.5.
If ACCESS-TYPE = 'OC6', to to Step 3.24.6
If ACCESS-TYPE = OU4', go to Step 3.27.1.
If ACCESS-TYPE = OU5', go to Step 3.27.2.
If ACCESS-TYPE = PID', go to Step 3.25.
If ACCESS-TYPE = RC ', go to Step 3.9.
If ACCESS-TYPE = RDK', go to Step 3.5.

17-5

DS 2 4 1

If ACCESS-TYPE = RD2', go to Step 3.6.
If ACCESS-TYPE = RF1', go to Step 3.2.1.
If ACCESS-TYPE = RF2', go to Step 3.2.2.
If ACCESS-TYPE = RF3', go to Step 3.2.3.
If ACCESS-TYPE = RDKI, go to Step 3.7.
If ACCESS-TYPE = R121, go to Step 3.8.
If ACCESS-TYPE = RSi', go to Step 3.1.1.
If ACCESS-TYPE = RS3', go to Step 3.1.2.
If ACCESS-TYPE = *RS41, go to Step 3.1.3.
If ACCESS-TYPE RS5, go to Step 3.1.4
If ACCESS-TYPE = RUK', go to Step 3.3.
If ACCESS-TYPE = RU2', go to Step 3.4.
If ACCESS-TYPE = SD 1, go to Step 3.12.
If ACCESS-TYPE = SI 1, go to Step 3.13.
If ACCESS-TYPE = SMI', go to Step 3.11.1.
If ACCESS-TYPE = SM2', go to Step 3.11.2.
If ACCESS-TYPE = S01', go to Step 3.10.1.
If ACCESS-TYPE = S02', go to Step 3.10.2.
If ACCESS-TYPE = UIF', go to Step 3.26.

If ACCESS-TYPE not any of the above, generate an error
message and abandon the access path.

3.1 Generate DML for record selection:

3.1.1 Generate DML for RSI'.

IFNOTlrsl-rtidl, rsl-dfidl, rsl-op,
rsl-rtidr, rsl-dfidr

NEXTINLOOP.i
ENDIF

Proceed with next iteration of Step 3.

3.1.2 Generate DML for 'RS3'.

IFNOT3rs3-value, rs3-op, rs3-variable
NEXTINLOOP.i
ENDIF

Proceed with next iteration of Step 3.

3.1.3 Generate DIML for PS4'.

IFNOT2rs4-rtid, rs4-dtid, rs4-op,
rs4-variable

NEXTINLOOP. i
ENDI F

17-(,

DS 620341200

Proceed with next iteration of Step 3.

3.1.4 Generate DML for RS5'.

IFC

Proceed with next iteration of Step

3.2 Generate DML for function application:

3.2.1 Generate DML for 'RFI'.

GIF rfl-rtid, rfl-dfid, rfl-position

Proceed with next iteration of Step 3.

3.2.2 Generate DML for RF2'.

OU2 rf2-value, rf2-position

Proceed with next iteration of Step 3.

3.2.3 Generate DML for RF3'.

OU3 rf3-alg-id, rf3-mod-inst, rf3-parmno,
rf3-is-ptr

Proceed with next iteration of Step 3.

3.3 Generate DML for RUK'.

Find the RK-REC-KEY entry in the RECORD-KEY-TABLE by
setting RK-INDEX = REC-SELECT-SPEC-PTR.

Set RUK-KEYVALUE = the concatenation of ISQL-VAR-i
through ISQ-VAR-j where i = RK-ISQ-PTR of
RK-DATA-FIELD(RK-INDEX,L) and n = RK-ISQ-PTR of
RK-DATA-FIELD(RK-INDEX, RK-DF-USED).

Generate DML for record update with direct a:cess key:

RUK rk-rtid, ruk-keyvalue, ruk-lock

Proceed with next iteration of Step 3.

3.4 Generate DML for 'RU2'.

Generate DML for update to current of record type,
which may be a member in set RU2-SETID:

17-7

DS 6 2 0 ,14 127

PUS ru2-rtid, ru2-setid, ru2-locl:

Proceed with next iteration of Step 3.

3.5 Generate DML for 'RDK'.

Find the RK-REC-KEY entry in the RECORD-KEY-TABLE by
setting PK-INDEX = REC-SELECT-SPEC-PTR.

Set RDK-KEYVALUE = the concatenation of ISQL-VAR-i
through ISQL-VAR-j where i = RK-ISQ-PTR of
RK-DATA-FIELD(RK-IINDEX,L) and n = RK-ISQ-PTR of
RK-DATA-FIELD(RK-INDEX, RK-DF-USED).

Generate DML for record update with direct access key:

RDIK rk-rtid, rdk-keyvalue, rdk-lock

Proceed with next iteration of Step 3.

3.6 Generate DML for 'RD21.

Generate DML for delete of current of record type,
which may be a member in set RD2-SETID:

RDS rd2-rtid, rd2-setid, rd2-lock

Proceed with next iteration of Step 3.

3.7 Generate D::!L for RIK'.

Find the RK-REC-KEY entry in the RECORD-KEY-TABLE by
setting RK-INDEX =REC-SELECT-SPEC-PTR.

Set RDI-KEYVALUE =the concatenation of ISQL-VAP-i
through ISQL-VAR-j where i = RK-ISQ-PTR of
RK-DATA-FIELD(RK-INDEX,L) and n = RK-ISQ-PTR or
RK-DATA-FIELD(RK-INDEX, RK-DF-USED).

Generate DML for record update with direct access key:

P1K rk-rtid, rik-keyvalue, rik-lock

Proceed with next iteration of Step 3.

3.8 Generate DML for 'R12'.

Generate DML for insert of record type, which nay' be

17-8

DS 620341200

a member in set R12-SETID:

RIS ri2-rtid, ri2-setid, ri2-lock

Proceed with next iteration of Step 3.

3.9 Generate DML for RC'.

Generate DML for record currency reset:

RCR rcs-rtid

Proceed with next iteration of Step 3.

3.10 Generate DML for positioning on record set owner:

3.10.1 Generate DML for S01'.

Generate DML:

FOW ss-setid
IFRECFOUND

Proceed with next iteration of Step 3.

3.10.2 Generate DML for S02'.

Generate DML:

FOW ss-setid
I FRECNOTFOUND
NEXTINLOOP. i
ENDIF

Proceed with next iteration of Step 3.

3.11 Generate DML for positioning on record set
member(s):

3.11.1 Generate DML for 'SMI'.

FFM ss-setid, ss-rtid
IFRECNOTFOUND

Proceed with next iteration of Step 3.

3.11.2 Generate DML for 'SM2'.

Increment loop labeler: i=i+l

17-9

• B MM| M |

DS 620341200

Generate DIML:

FFM ss-setid, ss-rtid
LOOP.i
IFRECNOTFOUND
EXITLOOP.i
ENDIF

Push onto DML stack:

ENDLOOP.i
FNM ss-setid, ss-rtid

Proceed with next iteration of Step 3.

3.12 Generate DML for 'SD '.

Generate DML for removal from record set:

SD sd-setid, sd-rtid

Proceed with next iteration of Step 3.

3.13 Generate DML for 'SI '.

Generate DML for insertion in record set:

SI si-setid, si-rtid

Proceed with next iteration of Step 3.

3.14 Generate DML for putting a value into a variable:

3.14.1 Generate DML for 'FGI'.

GIO fgl-rtid, fgl-dfid, fgl-variable

Proceed with next iteration of Step 3.

3.14.2 Generate DML for FG2'.

GF2 fg2-value, fg2-variable

Proceed with next iteration of Step 3.

3.14.3 Generate DML for FG3'.

MV3 fg3-alg-id, fg3-mod-inst, fg3-parm-no,

17-10

DS 620341200

fg3-is-ptr

Proceed with next iteration of Step 3.

3.14.4 Generate DML for "FG4'.

MV4 fg4-cma-constant, fg4-alg-id,
fg4-mod-inst, fg4-parm-no

Proceed with next iteration of Step 3.

3.14.5 Generate DML for "MVS'.

Generate DML for moving a run-time value to an
ISQ variable:

MVS mvs-isq-ptr

Proceed with next iteration of Step 3.

3.15 Generate DML for 'FU .

Generate DML for moving value of a variable to a
field:

MV fus-variable, fus-rtid, fus-dfid

Proceed with next iteration of Step 3.

3.15a Generate DML for FUI'.

Generate DML for moving the value of a complex mapping
algorithm parameter to a field:

MV6 ful-alg-id, ful-mod-inst, ful-parm-no, ful-dfno,
ful-rtno

Proceed with next iteration of Step 3.

3.15b Generate DML for 'FU2'.

Generate DML for moving the values of a complex
mapping algorithm parameter to an entire record:

MV5 fu2-alg-id, fu2-mod-inst, fu2-parm-no, fu2-rtno

Proceed with next iteration of Step 3.

3.15c Generate DML for FU3'.

17-11

DS 620V41Z>

Generate DML for moving value of a field to a ccmplex
mapping algorithm parameter:

1V7 fu3-dfno, fu3-rtno, fu3-alg-id, fu3-mod-inst,
fu3-parm-no

Proceed with next iteration of Step 3.

3.15d Generate DML for FU4'.

Generate DML for moving an entire record to a complex
mapping algorithm parameter:

MV fu4-rtno, fu4-alg-id, fu4-mod-inst, fu4-parm-no

Proceed with next iteration of Step 3.

3.16 Generate DML for IF condition THEN:

3.16.1 Generate DML for 'IT1'.

IF itl-rtidl, itl-dfidl, iti-op,
itl-rtidr, itl-dfidr

Proceed with next iteration of Step 3.

-3.16.2 Generate DML for 'IT2'.

IF it2-value, it2-op, it2-rtidr, it2-dfidr

Proceed with next iteration of Step 3.

3.17 Generate DML for 'IE '.

Generate DML for end of true part of TF statement:

ELSE

Proceed with next iteration of Step 3.

3.18 Generate DML for CAL'.

Generate DML to call a complex mapping aigorith. tc,
C-I or I-C conversions.

CALL cal-alg-id, cal-mod-inst, , cal-parm-no i)
for i = 1 through cal-parm-count.

17-12

DS 620341200

Proceed with next iteration of Step 3.

3.19 Generate DML for end of IF statement or of path:

3.19.1 Generate DML for El'.

ENDIF

Proceed with next iteration of Step 3.

3.19.2 Generate DML for EP'.

Generate DML to empty buffer:

EP.i + 1

Pop the DML stack onto the generated DML
access path

3.20 Generate DML to generate a COBOL IF statement in
internal schema format for all ISQ-entries where
ISQ-TYPE = 2 and ISQ-TYPE2-SOURCE = E' OR I'.

IIF
NXS
ELS
NLP i
EIF

Proceed with the next iteration ot Step 3.

3.21 Generate DM- o generate a COBOL IF statement in
conceptual ,nema formt fr the tl whe c Cse.

CIF

NXS
ELS
NLP i
EIF

Proceed with the next iteration of Step 3.

3.22 Generate DML to move records from the schema area to
working-storage area and back.

3.22.1 Generate DML for MR1'.

MR1 mrl-rtid, mrl-rtno

17-13

DS 62034123:

Proceed with next iteration of Step 3.

3.22.2 Generate DML for MR2'.

MR2 mr2-rtno, mr2-rtid

Proceed with next iteration of Step 3.

3.23 Generate DML to complete IF statement containing
ORedconditions.

Generate DML for NXS'

NXS
ELS
NLP. i
EIF

3.24 Generate DML to retrieve from repeating data fields.

3.24.1 Generate DML for OCI' to initialize index to
one:

SXl ocl-dfno

Proceed with next iteration of Step 3.

3.24.2 Generate DML for OC2' to set index and
index-max to user-specified value:

SXI oc2-index-dfno, oc2-isq-ptr
MVI oc2-isq-ptr, oc2-dfno

Proceed; with next iteration of Step 3.

3.24.3 Generate DML for OC3' to establish index-max
value:

M1,1, oc3-index-dfno, oc3-occurs-dep-dfno,

oc3-max-occurs

ProceeJ with next iteration of Step 3.

3.24.4, Generate DML for OC4' to establish loop
construct for repeating fields:

LOP. i
IF:,. oc4- index-d fno

1 7 - 1 ,4

DS 620341200

XLP.i

Push onto DML stack:

ELP.i
IXl oc4-index-dfno

Note that IXl is now on top of the stack.
Proceed with next iteration of Step 3.

3.24.5 Generate DML for OC5' to output repeating
field:

MVX oc5-dfno, oc5-num-indexes,
oc5-idx-dfnol, oc5-idx-dfno2,
oc5-idx-dfno3, oc5-is-ptr

Proceed with next iteration of Step 3.

3.24.6 Generate DML for 'OC6' to move null-values to
repeating data fields:

MVY oc6-dfno, oc6-num-indexes
oc6-idx-dfno,oc6-idx-dfn2,

oc6-idx-dfno3,oc6-type

3.25 Generate DML for PIO' to flush buffer.

PIO

3.26 Generate DML to generate a COBOL IF statement for
ISQ-entries where ISQ-type = 2 and ISQ-TYPE2-SOURCE
U 1.

UIF
NXS
ELS
NLP i
EIF

Proceed with next iteration of Step 3.

3.27 Generate DML to output where clause entries in CS
format for evaluation at the conceptual Schema level:

3.27.1 Generate DML for OU4' to move I-C output
algorithm parameters to tags:

OU4 ou4-alg-id, ou4-2oJ-in;t,

17-15

DS 62 34120D

ou4-parm-no, ou4-tag-no

Proceed with the next iteration of Step 3.

3.27.2 Generate DML for OU5' to move data fields to
tags:

OU5 ou5-dfno, ouS-datatype, ou5-tag-no

Proceed with the next iteration of Step 3.

4. When the entire access path has been transformed, return
to PRE13 to have the appropriate version of PRE9 invoked.

Constraints

1. Not all types of access paths can be handled by this
algorithm. The port access specification must be either
an RK (direct to record given key value), an RKI (direct to

record given multiple values for key), or an RAS (area
scan). These are the only types of port access
specifications that should be produced by PRE6.

2. If the port access specification is an RK or RKl, then the
selection criterion must be of the form:

(rk-dfid = rk-variable)

where:

a. The set of rk-dfid's must be either a complete
primary key or a complete secondary key

b. The rk-dfid's need not be in "correct" physical
sequence, but all must be specified that
comprise the record key, i.e. generic keys are
not supported.

c. Primary and secondary record keys must be

direct-access keys.

i-.3 Outputs

The outputs of PRE7 are generic DML statements. The
specific types of commands generated include the
following.

BEGIN requests DBMS to start loqging

17-16

DS 620341200

actions for a logical unit of
work, which later will be either
commited or undone

CALL alg-id, {parm-id) invokes subroutine alg-id,
passing parameters parm-id to it

COMMIT requests DBMS to finalize actions
of a logical unit of work such
that they cannot be undone

ELSE begins ELSE part of IF statement
ENDIF terminates ELSE part of IF

statement
ENDLOOP.i closes i-th loop
EXITLOOP.i transfers control out of i-th

loop
RCR rtid changes current of run-unit to be

same as current of rtid
FFA rtid, areaid finds first record of type rtid

in area areaid
FFM setid, rtid finds first member of type rtid

in record set setid
FFR rtid, keyvalue finds first rtid occurrence with

given key value, using
direct-access search

FNA rtid, areaid finds next record of type rtid in
area areaid

FNM setid, rtid finds next member of type rtid in
record set setid

FNR rtid finds next record of type rtid
FOW setid finds owner in set setid
GIO rtid, dfid, variable reads field dfid from record of

type rtid into variable
IF argl, op, arg2 conditional: IF argl op arg2
IFC conditional: IF argl op arg2

OR . .

IFX conditional: IF index >
index-max

IF1 conditional: IF loop count >
number of values for a key

IF2 conditional: IF loop count = ith
iteration

IFNOT argl, op, arg2 conditional: 1F argl NOT on arg2
IFRECFOUND conditional: IF record-found,

using status code returned by
DBMS

IFRECNOTFOUND conditional: IF NOT
record-found, usinq status code
returned by DBMS

LOOP.i starts i-th loon
MR1 moves record from schema area to

1 7 - I

DS 6202...-D 6 2 ")' .

work ing-st or age
MR2 moves record from working-storaqre

to schema area
MVK moves key field values to kay

field of record
MV moves number of occurences or

occurs depending on value to
index-max

MVX moves indexed field to output
MVZ moves zero to loop count

controlling number of iterations
through construct for multiple
values of a key

MV variable, rtid, dfid moves value of variable into
field dfid in record of type rtid

MV1 moves value into variable
MV2 work-area, moves value of work-variable

work-variable, in work-area into variable
variable

MV3 moves run-time value to complex
mapping parameter for C-i
conversion

MV4 moves constant value to complex
mapping parameter for C-I or I-C
conversion

MV5 moves complex mapping parameter
to record after C-I conversion

MV6 moves complex mapping parameter
to data field of record after C-I
conversion

MV 7 moves data field of record to
complex mapping parameter for I-C
conversion

MV8 moves record to complex mapping
parameter for I-C conversion

NEXTINLOOP.i transfers control to next
iteration of i-th loop

OUTPUT arg, position moves arg tco position in output
buffcr

PIO flushes output buffer
RDK rtid, keyvalue removes record of type rtid from

database, usinq direct access by
key va lue

RDS rtid, setid removes record of type rtiJ fro =
database

RIK rtid, keyvalue adds record of type rtid to
data-base, usinq direct access bv
key value

RIS rtid, setid adds record c type rtid tn

17 - 1

DS 620341200

data-base
P.IDLLBACK requests DBMS to undo all changes

since transaction began
RUK rtid, kevvalue modifies record of type rtid,

using direct access by key value
RUS rtid, setid modifies record of type rtid
SD setid, rtid removes record of type rtid from

its participation as a member in
record set setid

SI setid, rtid inserts record of type rtid as a
member into record set setid

Specification of lock types (shared, exclusive, and none) are
carried explicitly on FFA, FNA, FFR, FNR, and some GIO commands.
Exclusive locks are carried explicitly on RDK, RDS, PIK, RIS,
RUK and RUS commands.

17.4 Internal Data Requirements

A stack of generated generic DIL commands.

17-19

DS 620341200

SECTION I

FUNCTION PRES Generate CSiES Transform

This function generates COBOL source code according to the
ANSI X3.23-1974 standard which at runtime will transform from an
aggregated, but not necessarily reduced, conceptual SELECT
response to a completely reduced external response.

18.1 Inputs

1. TARGET-HOST PIC XXX

Host upon which the CS-ES Transform Program will
execute at runtime.

2. MY-HOST PIC XXX

Host upon which CDPRE8 executes at precompile time.

3. MOD-NAME PIC X(10)

The program identification name of the CS-ES Transform
Program.

4. ES-ACTION-LIST included in ESAL copy member

External representation of fields to be retrieved.

5. CS-ACTION-LIST included in CSAL copy member

Conceptual representation of fielJs to be retrieved.

6. BOOLEAN-LIST included in BOOLST copy member

Contains information about boolean operators and
parenthesized logic from the "WHERE" clause.

7. CS-QUALIFY-LIST included in CSQUAL copy member

Conceptual representation of the "U'1;ERE" clause.

8. IS-QUALIFY-LIST

Internal representation of the WHERE clause.

9. ERRFI LE PIC X(30)

13-I

DS 620341200

The file name to which user error messages are written.

10. CMA-FLAG PIC 9

If zero, don't use complex mapping algorithm logic.
If non-zero, use complex mapping algorithm logic.

18.2 CDM Requirements

None

18.3 Internal Requirements

None

iacro Generation

Macros are code templates with optional substitutable
parameters which allow generated code to be more independent o:
the generating programs. All macros are to be generated through
calls to CDMACR. This routine requires the following
parameters:

Input
FILE-NAME PIC X(30) included in MACDAT copy member
LIBRARY-NAME PIC X(30) included in MACDAT copy member
MACRO-NAME PIC X(8) included in MACDAT copy member
SUBSTITUTION-LIST included in SBSTLST copy member

Output
RET-STATUS PIC X(5)

FILE-NAME contains the name of the file to which code is tc
be generated. This file must be closed prior to the CDWACR
call. Upon return to CDPRE8, FILE-NAME must be reopened for
EXTEND to allow code to be generated at the end of the file.

LIBRARY-NAME contains the name of the host upon which the
generated code will execute at runtime. This value is identical
to the CDPRE8 input parameter TARGET-HOST.

MACRO-NAr'E contains the name of the macro to be generated,
for example CTOEl.

SUBSTITUTION-LIST is described by the following structure:

01 SUBSTITUTION-LIST

18-2

DS 620341200

03 SL-USED PIC 99.
03 SL-MAX PIC 99.
03 SL-ROW-SIZE PIC 99.
03 SL-ENTRY OCCURS 8 TIMES

INDEXED BY SL-INDEX.
05 SL-PARAMETER PIC X(30).
05 SL-SUBST-VAL PIC X(30).

SUBSTITUTION-LIST is populated by setting SL-USED to the
number of parameter values the macro requires. SL-PARAMETER
(index) contains the macro parameter to be substituted for, for
example Pl. SL-SUBST-VAL (index) contains the corresponding
substitution value, for example CS-NDML-NO.

18.4 Processing

1. Generate two unique file names to contain the generated
COBOL
code by calling GENFIL two times. GENFIL requires
MY-HOST as an input parameter and returns the 30
character file name and the 5 character status.

File 1 will contain code starting at the Identification
Division. File 2 will contain code starting at the
Linkage Section. These files will be appended at the
end of CDPRE8 with the complete generated program
residing in file 1 whose name will be placed in CDPRE8
output parameter GEN-FILE-NAME.

2. Generate IDENTIFICATION DIVISION by substituting the
module name from input parameter MOD-NAME for P1 in
macro CTOE1 on file 1.

3. Calculate the external schema record size by summing
all used ES-SIZEs together. For each external field,
add 1 additional position for the null flags. This is
used to substitute for value P1 in macro CTOE2.

4. Determine which case is being handled. The case
definitions are:

CASE 1 - Requires two sorts in the CS-ES Transform
Program

Select DISTINCT with order by clause in which all sort
fields are not projected.

ex: Select DISTINCT :ul = coll

18-3

DS 620341200

:u2 = co12

from table
order by coll

co12
co13

If the ES-DISTINCT-FLAG contains Y and if at least 1 field
with ES-SORT-SEQUENCE greater than zero does not have a Y
in its ES-PROJECT-FLAG, CASE 1 applies.

CASE 2 - Requires, at most, one sort in the CS-ES Transform
Program.

Select "ith or without DISTINCT. Sort fields, if
any, are all projected. Some fields, however, may
not be projected if they are used only for
qualification.

ex: Select :ul = coll
from Table

If all fields which have ES-SORT-SEQUENCE greater than zero
.also have ES-PROJECT-FLAG equal to Y, CASE 2 applies.

CASE 3 - No Sorts

Any Select with statistics functions.

ex: Select AVG (COLl)
from Table

CASE 3 applies 'w'hen any ES-FCTN-NAME is not
blank.

5. Processing for CASE 1

5.1 Compute the conceptual schema record size by summing
all used CS-SIZEs together. For each conceptual
field, add 1 additional position for the null flags.

5.2 Generate working storage records for ES-TEMP-REC,
ES-RECORD-LENGTH and CS-REC and substitute for P1 the
value computed in Step 3 in Macro CTOE2 on file 1.

5.3 For each CS field, generate on file 1 the CS null
flags according to the following format:

05 CS-NULL-FLAG-xx PIC 9

13-4

DS 620341200

05 CS-NULL-FLAG-yy PIC 9

where xx through yy are the values of CS-INDEX. The
05 must start in column 16.

5.4 Generate on file 1 each conceptual field description
using the CS-TYPE, CS-SIZE and CS-ND fields. Use
routine CDPIC to generate the picture clauses.

03 CS-VARxx pic clause.

03 CS-VARyy pic clause.

where xx through yy are the CS-INDEX values and pic
clause is the picture clause generated by CDPIC.

5.5 Generate a file to contain the sorted external schema
output.

.01 TEMP-REC PIC X(nn)

where nn is the sum computed in Step 3.

5.6 For each ES-ACTION entry, generate on file 1 a working
storage external schema null flag and a working
storage external schema field definition according to
the following format.

01 WS-ES-REC.
03 WS-NULL-FLAGS.

05 WS-NULL-FLAG-01 PIC 9.

05 WS-NULL-FLAG-nn PIC
9. 03
WS-VAR-SS-01 pic clause.

03 WS-VAR-SS-nn pic clause.

where 01 to nn are the ES-INDEXEs and SS is the
CS-NDML-NO. Use CDPIC to generate the variable picture

18-5

DS 62034 12<

clauses using ES-SIZE, ES-TYPE and ES-ND.

5.7 For each ES-ACTION-LIST entry which has ES-PROJECT
flag equal Y, generate working storage variables and
null flag fields for use in duplicate elimination
according to the following format:

01 OLDVAR-nn-mm-NULL PIC 9.
01 OLDVAR-nn-mm pic clause.

where nn is the CS-NDML-NO and mm is the ES-INDEX
value. Use CDPIC to generate the variable picture
clauses using ES-SIZE, ES-TYPE and ES-ND.

5.8 Generate on file 1 the input parameters TARGET-HOST,
by substituting the value of P1, MOD-NAME, by
substituting the value of P2 and the length of the
read buffer, by substituting value P3 into the CTOE4
macro.

5.9 Generate in file 1, the first part of the sort buffer
for the distinct elimination sort using macro CTOE4B.
For parameter P1, substitute the value 1. For
parameter P2, substitute the value equal to twice the
number of ES-PROJECT-FLAGs equal to Y.

5.10 Generate in file 1, the sort buffer elements for the
distinct elimination sort. Scan the ES-ACTION-LIST.
For each ES-PROJECT-FLAG equal to Y, generate two sort
buffer elements using macro CTOE4C, one for the
field's null flag and one for the ES field itself.

To generate the sort buffer for a projected field's
null flag, use macro CTOE4C, substituting the value of
ES-INDEX for P1 (sort key starting position) , the
value 1 for P2 (sort key length), the value N for P3
(sort key type) and the value A for P4 (ascending
sort).

To generate the sort buffer for the projected field
itself, a running total must be kept of ES-SIZEs
whether or not the field is projected. This value
will be used in the calculation of the field's
starting position. In macro CTOE4C, add 1, ES-USED
and the running total described above to generate the
value to substitute for P1.

As an example, suppose that there are two ES fields,
the first one not projected and the second one

18-6

DS 620341200

projected:

ES-PROJECT-FLAG (1)
ES-PROJECT-FLAG (2) Y
ES-SIZE (1) 30
ES-SIZE (2) 6

Since ES-PROJECT-FLAG (1) does not equal Y, add
ES-SIZE (1) to the zero-initialized counter, giving
the value 30. ES-PROJECT-FLAG (2) contains Y, so to
generate the value for P1 in macro CTOE4C, add 1,
ES-USED which has the value 2 and the counter value
which is 30 giving 33. Therefore, 33 is the starting
position of the second ES field and should be
substituted for the parameter P1 in macro CTOE4C.
Substitute the value of the current ES-SIZE for P2
(sort key length), the value of the current ES-TYPE
for P3 (sort key type) and the value A for P4
(ascending sort).

5.11 Generate the first part of the sort buffer for the
"order by" sort using macro CTOE4B into file 1. For
parameter P1, substitute the value 2. For parameter
P2, substitute the value equal to twice the number of
ES-SORT-SEQUENCE values greater than zero.
FILE-REC-KEY-USED is P2.

5.12 Generate the sort buffer elements for the "order by"
sort into file 1. These elements must be generated
for each ES field whose ES-SORT-SEQUENCE is greater
than zero in ES-SORT-SEQUENCE order; that is the sort
buffer elements associated with ES-SORT-SEQUENCE equal
1 must be generated before the sort buffer elements
associated with ES-SORT-SEQUENCE equal 2. This is not
necessarily the order in which the fields are
encountered in the ES-ACTION-LIST. Two sort buffer
elements must be generated for each ES field with
ES-SORT-SEQUENCE greater than zero, a sort buffer
element for the field's null flag and a sort buffer
element for the ES field itself.

To generate the sort buffer element fcr the field's
null flag (assuming the lowest numbered
ES-SORT-SEQUENCE field greater than zero but not yet
generated has been located), use macro CTOE4C,
substituting the value of ES-INDEX for P1 (sort key
starting position), the value 1 for P2 (sort key
length), the value N for P3 (sort key type) and the
value A for P4 (sort direction).

18-7

DS 62041 :'1

To generat e the sort buffer for the sort field itself,
a counter must be maintained which contains the su, c-
ES-SIZEs for those fields with a lesser ES-INDEX than
the current field. Since generating these buffers
will probably require multiple passes of the
ES-ACTION-LIST, it may be advantageous to compute this
sum after the sort field of interest has been located.
As an example, suppose that the following
ES-ACTION-LIST is encountered:

ES-SORT-SEQUENCE (1) 2
ES-SORT-SEQUENCE (2) 0
ES-SORT-SEQUENCE (3) 1
ES-SIZE (1) 6
ES-SIZE (2) 30
ES-SIZE (3) 1

The sort buffer element associated with the field
whose ES-INDEX is 3 must be generated first, because
it contains the lowest ES-SORT-SEQUENCE greater than
zero of any sort field not yet generated. Assuming
that the field's null flag sort buffer element has
been generated, the starting position of field 3 is
the sum of the ES-SIZEs from fields I and 2 (36) plus
the value of ES-USED which is 3 to account for the
null flags plus 1 which equals 40. This is the value
which must be substituted for P1 in macro CTOE4C for
this field. Substitute the value of the current
ES-SIZE for P2 (sort key length), the value of the
current ES-TYPE for P3 (sort key type) and if the
current ES-SORT-DIRECTION equals "A" or blank
substitu,,e "A" for P4 (sort direction), otherwise
substitute "D" for P4.

5.13 Generate in file 2, the common linkage section usino
macro CTO.5. 7,. mq -ic r has no paraneters.

5.14 Generat- in file th linkage section ES varla3ce
descriptions for the projected fields. Use routine
CDP8A, sending it thr C -ACTION-LIST, the
ES-ACTION;-LIST an- nae of the closed file - a,-
parameters. CD, ;% will a-,nerate ES variable na--cn
pictur, c :or t , ollowinc for7at:

03 cS-V -sndmI -ef i ndexaa pic clause.

• • • II I II I II II I

DS 62034120-

03 ES-VAR-csndml-esindexnn pic clause.

5.15 Generate on file 2 the names and picture clauses for
the
conceptual schema qualify variables which will be
passed to the generated program at runtime.

In all cases, generate the following line:

01 CS-QUALIFY-VAR.

Scan the CS-QUALIFY-LIST searching for a zero value in
a used CSQ-AUCR. If none are found, generate the
following:

03 FILLER PIC X

For each used CSQ element with CSQ-AUCR equal zerc,
generate the following:

03 CSQ-VAR-nn picture clause.

where nn is the CSQ-INDEX of the current field.

Call CDPIC using the corresponding CSQ-L-TYPE,
CSQ-L-SIZE and CSQ-L-ND to generate the picture
clause.

5.16 Generate on file 2 the beginning of the procedure
division using macro CTOE6C. This macro has no
parameters.

5.17 If any used ISQ-EVAL-FLAG has a zero value, call
CDGENIF to generate on file 2 the IF clauses to
perform the final qualification on the returned
conceptual rows. CDGENIF requires the following
parameters:

Inputs
BOOLEAN-LIST
CS-QUALIFY-LIST
DUMMY PIC X
QUALIFY-TYPE PIC X VALUE "C"
FILE-NAME PIC X(30)
SUBTRANS-ID PIC 999 VALUE ZERO
DUMMY PIC X

Outputs
RET-STATUS PIC X(5)

1i5 -,

DS 620341200

FILE-NAME must contain the file name of the closed
file 2.

If CDGENIF is successful (RET-STATUS equals
KES-SUCCESSFUL), generate on the reopened file 2, the
macro "CTOEI8" which has no parameters. This macro
terminates the IF clauses generated by CDGENIF.

5.18 Call CDCE to generate in file 2 calls to user modules
to perform complex CS-ES transformations, if any are
defined. Also, if user CS-ES transformation modules
are defined, CDCE will generate into file 1 the names
and descriptions of the parameters to be sent to the
user module at runtime.

For those CS fields which have no complex CS-ES
algorithm defined, CDCE will, for CASE 1 CS-ES
programs, generate into file 2 moves from the CS
variable names to working storage variable names
previously generated. The null flag values are passed
along as well.

The calling sequence for CDCE is:

Inputs
01 WORK-FILE1 PIC X(30)
01 WORK-FILE2 PIC X(30)
01 STRAIGHT-MOVE-FLAG PIC X VALUE "N"
01 CS-ACTION-LIST COPY CSAL OF IISSCLIB
01 ES-ACTION-LIST COPY ESAL OF IISSCLIB
01 TARGET-HOST PIC XXX
01 CMA-FLAG PIC 9.

Outputs
01 RET-STATUS PIC X(5)

WORK-FILE1 must contain the name of the closed file 1.
WORK-FILE2 must contain the name of the closed file 2.
TARGET-HOST is the CDPRE8 input parameter.

5.19 Generate on file 2 the write of the temporary ES file
using macro CTOE5A. This macro has no parameters.

5.20 Generate on file 2 the call to the sort routine for
the duplicate elimination sort and the reading of the
results file using macro CTOE6CI. This macro has no
parameters.

12-10

DS 620341200

5.21 Generate on file 2 the projected field duplicate
elimination by:

5.21.1 Generating the following 1 line:

IF FIRST-RECORD NOT = 1

5.21.2 Generating the comparison of null flags by
scanning the ES-ACTION-LIST. For each ES
field which has ES-PROJECT-FLAG equal Y,
generate 1 line as follows:

AND OLDVAR-ndml-esindex-NULL
WS-NULL-FLAG-esindex

where ndml is the current value of CS-NDML-NO
and esindex is the current ES-INDEX value.

5.21.3 After all null flag comparisons are generated,
scan the ES-ACTION-LIST again. For each ES
field that has ES-PROJECT-FLAG equal Y,
generate 1 line as follows:

AND OLDVAR-ndml-esindex = WS-VAR-ndml-esindex

where ndml is the current value of CS-NDML-NO
and esindex is the current ES-INDEX value.

5.21.4 After all of the projected flag and field
comparisons have been generated, generate the
following line:

GO TO RELEASE-RECORDS.

5.22 Generate into file 2 the moves from the working
storage fields and flags to the oldvar fields and
flags for the next iteration of the distinct test.

Scan the ES-ACTION-LIST. For each ES field that has
ES-PROJECT-FLAG equal Y, generate 2 move statements as
follows:

MOVE WS-VAR-ndml-esindex TO OLDVAR-ndml-esindex.
MOVE WS-NULL-FLAG-esindex TO OLDVAR-ndml-esindex-NL'LL.

where ndml is the value of CS-NDML-N:O and esindex is
the value of the current ES-INDEX.

18-11

DS 6203412.!

5.23 Generate on file 2 the end of the release records loop
using macro CTOEl9. This macro has no parameters.

5.24 Generate into file 2 the call to the "order by" sort
and the read loop using macro CTOE6D. This macro has
no parameters.

5.25 Generate into file 2 the projection step which places
projected fields and flags into the output file.

Scan the ES-ACTION-LIST. For each ES field which has
ES-PROJECT-FLAG equal Y, generate 2 move statements as
follows:

MOVE WS-VAR-ndml-esindex TO ES-VAR-ndml-esindex
MOVE WS-NULL-FLAG-esindex TO ES-NULL-FLAG-esindex

where esindex is the value of the current ES-INDEX

5.26 Generate into file 2 the EXIT-PROGRAM and part of the
DEL-PARA paragraphs using macro CTOEl4, substituting a
blank character for parameter P1.

5.27 Generate on file 2 two calls to "DELFIL" to delete
ES-TEMP and TEMP-FILE as follows:

CALL "DELFIL" USING MY-HOST, CDMESRES.
CALL "DELFIL" USING MY-HOST, CDMTMPFL.

5.28 Append file 2 to file 1 by calling CDCWF after closing
both files. CDCWF requires the following parameters:

FILE 1 PIC X(30)
FILE 2 PIC X(30)
MY-HOST PIC XXX

Upon return from CDCWF, file 1 will contain the
complete generated program and file 2 will not exist
(CDCWF deletes it). Move the name of file 1 to the
CDPRE8 output parameter GEN-FILE-NAME. Case 1
processing is now complete.

6. Processing for CASE 2

6.1 Compute the conceptual schema record size by summing
all used CS-SIZEs together. For each conceptual
field, add 1 additional position for the null flag:s.

18-12

DS 620341200

6.2 Generate working storage records for ES-TEMP-REC,
ES-RECORD-LENGTH and CS-REC and substitute for P1 the
value computed in Step 3 in macro CTOE2 on file 1.

6.3 If any used ES-SORT-SEQUENCEs are greater than zero or
if ES-DISTINCT-FLAG equals Y, generate on file 1 a
temporary file to contain the sorted External Schema
output.

01 TEMP-REC PIC(nn)

where

nn is the sum computed in Step 3.

6.4 For each CS field, generate on file 1 the CS null
flags according to the following format:

05 CS-NULL-FLAG-xx PIC 9.

05 CS-NULL-FLAG-yy PIC 9.

where xx through yy are the values of CS-INDEX. The
05 must start in column 16.

6.5 Generate on file 1 each conceptual field description
using the CS-TYPE, CS-SIZE and CS-ND fields. Use
routine CDPIC to generate the picture clauses.

03 CS-VARx>: pic clause.

03 CS-VARyy pic clause.

where xx through yy are the values of CS-INDEX and pic
clause is the picture clause generated by CDPIC.

6.6 Generate on file 1 the common workin3 storage section
by substituting the value of innur parmeter
TARGET-HOST for P1, the value c- the input parameter-
MOD-NA24E for P2 into the CTOE4 -acro and the value Ior
the length of the read buffer for P3.

6.7 If any used ES-SORT-SEQUiENCE nu-bers are greater than
zero or if ES-DISTINCT-FlAG equt.is Y, generate on file

18-13

DS 620341200

1, for each ES-ACTION entry, a working storage
external schema null flag and a working storage
external schema field definition according to the
following format.

01 WS-ES-REC.
03 WS-NULL-FLAGS.

05 WS-NULL-FLAG-01 PIC 9.

05 WS-NULL-FLAG-nn PIC 9.
03 WS-VAR-SS-01 pic clause.

03 WS-V'AR-SS-nn pic clause.

where 01 to nn are the ES-INDEXes and SS is the
CS-NDML-NO. Use CDPIC to generate the variable
picture clauses using ES-SIZE, ES-TYPE and ES-ND.

6.8 If ES-DISTINCT-FLAG equals Y, generate in file I the
following one line which will serve as a comparison
buffer for duplicate elimination.

01 DST-REC PIC X(nnn)

where nnn is the value computed in Step 3.

6.9 If any used ES-SORT-SEQUENCE is greater than zerc or
ES-DISTINCT equals Y, a sort buffer must be generated
on file 1. To generate the first part of the sort
buffer, use macro CTOE4B substituting the value 1 for
P1 and two times the value of ES-USED for P2.

6.10 If any used ES-SORT-SEQUENCE is greater than zero,
generate in file 1 the sort buffer elements for the
"order by" portion of the sort.

These elements must be generated for each ES field
whose ES-SORT-SEQUENCE is greater than zero in
ES-SORT-SEQUENCE order; that is the sort buffer
elements associated ,:ith ES-SORT-SEQUENCE equal I must
be generated before the sort buffer elements
associated with ES-SORT-SEQUENCE equal 2. This is not
necessarily the order in which the fields are
encountered in the ES-ACTION-LIST. Two sort buffer
elements must be generated for each ES field with

18-14

DS 620341200

ES-SORT-SEQUENCE greater than zero, a sort buffer
element for the field's null flag and a sort buffer
element for the ES field itself.

To generate the sort buffer element for the field's
null flag (assuming the lowest numbered
ES-SORT-SEQUENCE field greater than zero, but not yet
generated, has been located), use macro CTOE4C,
substituting the value of ES-INDEX for P1 (sort key
starting position), the value 1 for P2 (sort key
length), the value N for P3 (sort key type) and the
value A for P4 (sort direction).

To generate the sort buffer for the sort field itself,
a counter must be maintained which contains the sum of
ES-SIZEs for those fields with a lesser ES-INDEX than
the current field. Since generating these buffers
will probably require multiple passes of the
ES-ACTION-LIST, it may be advantageous to compute this
sum after the sort field of interest has been located.
As an example, suppose that the following
ES-ACTION-LIST is encountered:

ES-SORT-SEQUENCE (1) 2
ES-SORT-SEQUENCE (2) 0
ES-SORT-SEQUENCE (3) 1
ES-SIZE (1) 6
ES-SIZE (2) 30
ES-SIZE (3) 1

The sort buffer element associated with the field
whose ES-INDEX is 3 must be generated first, because
it contains the lowest ES-SORT-SEQUENCE greater than
zero of any sort field not yet generated. Assuming
that the field's null flag sort buffer element has
been generated, the starting position of field 3 is
the sum of the ES-SIZEs from fields 1 and 2 (36) plus
the value of ES-USED which is 3 (to account for the
null flags) plus 1 which equals 40. This is the value
which must be substituted for P1 in macro CTOE4C for
this field. Substitute the value of the current
ES-SIZE for P2 (sort key length), the value of the
current ES-TYPE for P3 (sort key type) and if the
current ES-SORT-DIRECTION equals "A" or blank,
substitute "A" for P4 (sort direction), other.'ise
substitute "D" for P4.

6.11 If ES-DISTINCT-FLAG equals Y, sort buffer elements
must be generated on file 1 for any used ES fields

18-15

DS 6203412Cc

which have ES-SORT-SEQUENCE equal zero. These sort
buffer elements can be generated in the order of their
occurrence on the ES-ACTION-LIST.

For each ES field which qualifies, generate two sort
buffer elements using macro CTOE4C, one for the
field's null flag and one for the ES field itself.

To generate the sort buffer for a field's null flag,
use macro CTOE4C, substituting the value of ES-INDEX
for P1 (sort key starting position), the value 1 for
P2 (sort key length), the value N for P3 (sort key
type) and the value A for P4 (ascending sort).

To generate the sort buffer for the field itself, a
running total must be kept of ES-SIZEs. This value
will be used in the calculation of the field's
starting position. In macro CTOE4C, add 1, ES-USED
and the running total described above to generate the
value to substitute for P1.

As an example, suppose that the following
ES-ACTION-LIST is encountered:

ES-SORT-SEQUENCE (1) 2
ES-SORT-SEQUENCE (2) 1
ES-SORT-SEQUENCE (3) 0
ES-SIZE (1) 30
ES-SIZE (2) 6
ES-SIZE (3) 30

The sort buffer elements have already been generated
for the first two ES fields in Step 5.11. How.ever,
while scanning the ES-ACTION-LIST searching for a used
field with ES-SORT-SEQUENCE equal zero, add the
ES-SIZEs to a zero initialized counter. Add 30 for
field 1 and 6 for field 2 giving 36. When a field is
encountered with ES-SORT-SEQUEN"CE equal zero, add the
counter contents (36) plus ES-USED (3) plus 1 giving
40, the value to substitute for P1 in macro CTOE4C.

Substitute the value of the current ES-SIZE for P2
(sort key length) , the value of the current ES-TYPE
for P3 (sort key type) and the value A for P4
(ascending sort).

6.12 Generate in file 2 the -o-ncn linkage section sing
macro CTOE5. Thi-o mr hs no parameters.

DS 62034120,L

6.13 Generate in file 2 the linkage section ES variable
descriptions for the projected fields. Use routinc
CDPSA, sending it the CS-ACTION-LIST, the
ES-ACTION-LIST and the name of the closed file 2 as
parameters. CDPSA will generate ES variable names and
pictures according to the following format:

03 ES-VAR-csndml-esindexaa picture clause.

03 ES-VAR-csndml-esindexnn picture clause.

6.14 Generate on file 2 the names and picture clauses for
the conceptual schema qualify variables which will be
passed to the generated program at runtime.

In all cases, generate the following line:

01 CS-QUALIFY-VAR.

Scan the CS-QUALIFY-LIST searching for a zero value in
a used CSQ-AUCR. If none are found, generate the
following:

03 FILLER PIC X.

For each used CSQ element with CSQ-AUCR equal zero,
generate the following:

03 CSQ-VAR-nn picture clause.

where nn is the CSQ-INDEX of the current field.

Call CDPIC using the corresponding CSQ-L-TYPE,
CSQ-L-SIZE and CSQ-L-ND to generate the picture
clause.

6.15 If any used ES-SORT-SEQUENCE is greater than zero or
ES-DISTINCT-FLAG equals Y, generate on file 2 the
beginning of the Procedure Division using macro
CTOE6B. This macro has no parameters.

6.16 If neither of the cond'itions in the previous step
hold, generate on file 2 the beginning of the
Procedure Division using macro CTOE6. This macro has
no parameters.

6.17 If any used ISQ-EVAL-FLAG has a zero value, call

1 8 - 1

DS 620341200

CDGENIF to generate on file 2 the IF clauses to
perform the final qualification on the returned
conceptual rows. CDGENIF requires the following
parameters:

Inputs
BOOLEAN-LIST
CS-QUALIFY-LIST
DUMMY PIC X
QUALIFY-TYPE PIC X VALUE "C"
FILE-NAME PIC X(30)
SUBTRANS-ID PIC 999 VALUE ZERO
DU=1Y PIC X

Outputs
RET-STATUS PIC X(5)

FILE-NAME must contain the file name of the closed
file 2.

IF CDGENIF is successful (RET-STATUS equals
KES-SUCCESSFUL), generate on the reopened file 2 the
macro CTOE18 which has no parameters. This macro
terminates the IF clauses generated by CDGENIF.

6.18 Call CDCE to generate in file 2 calls to user modules
to perform complex and non-complex CS-ES
transformations, if any are defined. Also, if complex
CS-ES transformation modules are defined, CDCE will
generate into file 1 the names and descriptions of the
parameters to be sent to the user module at runtine.

The calling sequence for CDCE is:

Inputs
01 WORK-FILE1 PIC X(30)
01 WORK-FILE2 PIC X(30)
01 STRAIGHT-MOVE-FLAG PIC X
01 CS-ACTION-LIST COPY CSAL OF IISSCLIB
01 ES-ACTION-LIST COPY ESAL OF IISSCLIB
01 TARGET-HOST PIC XXX
01 CMA-FLAG PIC 9.

Outputs
01 RET-STATUS PIC X(5)

WORK-FILE1 must contain the name of the closed file 1.
WORK-FILE2 must contain the name of the closed file 2.

18-18

DS 6203412 0

TARGET-HOST is the CDPRE3 input parameter.

The STRAIGHT-MOVE-FLAG must be set to Y if any used
ES-SORT-SEQUENCE is greater than zero or if
ES-DISTINCT-FLAG equals Y. If neither of the previous
conditions hold, set STRAIGHT-MOVE-FLAG to N.

6.19 If any used ES-SORT-SEQUENCE is greater than zero or
ES-DISTINCT-FLAG equals Y, generate on file 2 the
write of the temporary file using the CTOE5A macro
which has no parameters.

6.20 If any used ES-SORT-SEQUENCE is greater than zero or
ES-DISTINCT-FLAG equals Y, generate on file 2 the sort
call and read loop using the CTOE6B1 macro which has
no parameters.

6.21 If ES-DISTINCT-FLAG equals Y, generate on file 2 the
duplicate elimination Procedure Division code using
the CTOE20 macro which has no parameters.

6.22 If any used ES-SORT-SEQUENCE is greater than zero or
ES-DISTINCT-FLAG equals Y, generate into file 2, a
projection step which places projected fields and
flags into the output parameters.

Scan the ES-ACTION-LIST. For each ES field which has
ES-PROJECT-FLAG equal Y, generate 2 move statements as
follows:

MOVE WS-VAR-ndml-esindex TO ES-VAR-ndml-esindex

MOVE WS-NULL-FLAG-esindex TO ES-NULL-FLAG-esindex

where esindex is the value of the current ES-INDEX.

6.23 Generate into file 2 the EXIT-PROGRAM and part of the
DEL-PARA paragraphs using macro CTOE14, substituting a
blank character for parameter P1.

6.24 If any used ES-SORT-SEQUENCE is greater than zero or
ES-DISTINCT-FLAG equals Y, generate on file 2 two
calls to DELFIL to delete ES-TEMP and TEMP-FILE
follows:

CALL "DELFIL" USING MY-HOST, CDMESPES.
CALL "DELFIL" USING MY-HOST, CDMTMPFL.

6.25 Append file 2 to file 1 by calling CDCWF after closinq
both files. CDCWF requlres the follow;ing para etri:

1 8-i1 K

DS 620341200

FILEl PIC X(30)
FILE 2 PIC X(30)
MY-HOST PIC XX

Upon return from CDCWF, file 1 will contain the
complete generated program and file 2 will not exist
(CDCWF deletes it). Move the name of file 1 to the
CDPRE8 output parameter GEN-FILE-NAME. Case 2
processing is now complete.

7. Processing for CASE 3

7.1 Compute the conceptual schema record size by summing
all used CS-SIZEs together. For each conceptual
field, add 1 additional position for the null flags.

7.2 Generate working storage records for ES-TEMP-REC,
ES-RECORD-LENGTH, and CS-REC by substituting for P1
the value computed in step 3 in macro CTOE2 on.file 1.

7.3 For each CS field, generate on file 1 the CS null
flags according to the following format:

05 CS-NULL-FLAG-xx PIC 9.

05 CS-NULL-FLAG-yy PIC 9.

where xx through yy are the values of CS-INDEX. The
05 must start in column 16.

7.4 Generate on file 1 each conceptual field description
using the CS-TYPE, CS-SIZE and CS-ND fields. Use
routine CDPIC to generate the picture clauses.

03 CS-VARPx pic clause.

03 CS-VARvy pic clause.

where xx through yy are the values of CS-INDEX and pic
clause is the picture clause generated by CDPIC.

7.5 If any used ES-FCTN-DISTINCT equals Y, the following
temporary record is constructed:

18-20

DS 620341200

01 TEMP-REC PIC X(nn).

where

nn is the sum computed in Step 3.

7.6 Generate on file 1 working storage records by
substituting the value of input parameter TARGET-HOST
for P1, the value of the input parameter MOD-NAME for
P2 and the length of the read buffer for P3 into the
CTOE4 macro.

7.7 If any used ES-FCTN-DISTINCT equals Y, scan the
ES-ACTION-LIST searching for the largest ES-SIZE which
has ES-FCTN-DISTINCT equal Y. Generate on file 1 the
distinct elimination working storage elements by
substituting for parameter P1, the maximum of the
largest ES-SIZE with ES-FCTN-DISTINCT equal Y or 18 in
macro CTOE4A.

7.8 If no used ES-FCTN-DISTINCT equals Y, scan the
ES-ACTION-LIST searching for the largest used ES-SIZE.
Generate on file 1 the non-distinct working storage
elements by substituting, for parameter P1, the
maximum of the largest ES-SIZE or 18 in macro CTOE3.

7.9 For each ES-ACTION entry, generate on file 1 a working
storage external schema null flag and a working
storage external schema field definition according to
the following format.

01 WS-ES-REC.
03 WS-NULL-FLAGS.

05 WS-NULL-FLAG- 01 PiC 9.

05 WS-NULL-FLAG-nn PIC 9.
03 WS-VAR-SS-01 pic clause.

03 VS-VAR-SS-nn pic clause.

where 01 to nn are the ES-INDEXes and SS is the
CS-NDML-NO. Use CDPIC to generate the variable

18-21

DS 620341200

picture clauses using ES-SIZE, ES-TYPE and ES-N'D.

7.10 Generate in file 2 the common linkage section using
macro CTOE5. This macro has no parameters.

7.11 Generate in file 2 the linkage section ES variable
descriptions for the output fields. Use routine
CDP8A, sending it the CS-ACTION-LIST, the
ES-ACTION-LIST and the name of the closed file 2 as
parameters. CDP8A will generate ES variable names and
pictures according to the following format:

03 ES-VAR-csndml-esindexaa picture clause.

03 ES-VAR-csndml-esindexnn picture clause.

7.12 Generate on file 2 the names and picture clauses for
the conceptual schema qualify variables which will be
passed to the generated program at runtime.

In all cases, generate the following line:

01 CS-QUALIFY-VAR.

Scan the CS-QUALIFY-LIST searching for a zero value in
a used CSQ-AUCR. If none are found, generate the
following:

03 FILLER PIC X.

For each used CSQ element with CSQ-AUCR equal zero,
generate the following:

03 CSQ-VAR-nn picture clause.

where nn is the CSQ-INDEX of the current field. Call
CDPIC using the corresponding CSQ-L-TYPE, CSQ-L-SIZE
and CSQ-L-ND to generate the picture clause.

7.13 Generate on file 2 the beginning of the Procedure
Division using macro CTOE6A which has no parameters.

7.14 If any used ISQ-EVAL-FLAG has a zero value, call
CDGENIF to generate on file 2 the IF clauses to
perform the final qualification on the returned
conceptual rows. CDGENIF requires the following
parameters:

18-22

DS 620341200

Inputs
BOOLEAN-LIST
CS-QUALIFY-LIST
DUMMY PIC X
QUALIFY-TYPE PIC X VALUE "C"
FILE-NAME PIC X(30)
SUBTRANS-ID PIC 999 VALUE ZERO
DUMMY PIC X

Outputs
RET-STATUS PIC X(5)

FILE-NAME must contain the file name of the closed
file 2.

If CDGENIF is successful (RET-STATUS equals
KES-SUCCESSFUL), generate on the reopened file 2 the
macro CTOE18 which has no parameters. This macro
terminates the IF clauses generated by CDGENIF.

7.15 Call CDCE to generate in file 2 CS-ES transformations.
Also, if complex CS-ES transformation modules are
defined, CDCE will generate into file 1 the names and
descriptions of the parameters to be sent to the user
module at runtime.

The calling sequence for CDCE is:

Inputs
01 WORK-FILE1 P:c X(30)
01 WORK-FILE2 PIC X(30)
01 STRAIGHT-MOVE-FLAG PIC X VALUE "N"
01 CS-ACTION-LIST COPY CSAL OF IISSCLIB
01 ES-ACTION-LIST COPY ESAL OF IISSCLIB
01 TARGET-HOST PIC XXX
01 CMA-FLAG PIC 9

Outputs
01 RET-STATUS PIC X(5)

WORK-FILE1 must contain the name of the closed file 1.
WORK-FILE2 must contain the name of the closed file 2.
TARGET-HOST is the CDPRES input parameter.

7.16 Generate on file 2 the write of the temporary ES file
using macro CTOE5A. This macro has no parameters.

7.17 For each ES-ACTION-LIST entry, generate in file 2 the

18-23

DS 62034120'-,

Procedure Division function logic as detailed for each
function type below.

7.17.1 COUNT DISTINCT

If ES-FCTN-NAME equals COUNT and
ES-FCTN-DISTINCT equals Y, substitute the
following values into macro CTOE7.

Parameter Substitution Value

P1 ES-INDEX value
P2 CS-NDML-NO value
P3 If ES-TYPE equals C,

substitute X
If ES-TYPE does not equal
C, substitute N

7.17.2 SU- DISTINCT

If ES-FCTN-NANE equals SUM and
ES-FCTN-DISTINCT equals Y, substitute the
following values into macro CTOE8.

Parameter Substitution Value

P1 ES-INDEX value
P2 CS-NDML-NO value
P3 If ES-TYPE equals C,

substitute X
7f ES-TYPE does not czu2!
C, substitute N

7.17.3 AVG DISTINCT or MEAN DISTINCT

If ES-FCTN-NAME equals AVG or MEAN and
ES-FCTN-DISTINCT equals Y, substitute the
following values into macro CTOE9.

Parameter Substitution Value

P1 ES-INDEX value
P2 CS-NDML-NO value
P3 If ES-TYPE equals C,

substitute X
If ES-TYPE does not equal
C, substitute N

7.17.4 COUNT

18-24

DS 62u341200

If ES-FCTN-NAME equals COUNT and
ES-FCTN-DISTINCT does not equal Y, substitute
the following values into macro CTOE10.

Parameter Substitution Value

P1 ES-INDEX value
P2 CS-NDML-NO value

7.17.5 SUM

If ES-FCTN-NAME equals SUM and
ES-FCTN-DISTINCT does not equal Y, substitute
the following values into macro CTOEII.

Parameter Substitution Value

P1 ES-INDEX value
P2 CS-NDML-NO value

7.17.6 AVG or MEAN

If ES-FCTN-NAME equals AVG or MEAN and
ES-FCTN-DISTINCT does not equal Y, substitute
the following values into macro CTOEl2.

Parameter Substitution Value

Pi ES-INDEX value
P2 CS-NDML-NO value

7.17.7 If ES-FCTN-NAME equals MIN, substitute the
following values into macro CTOEl3.

Parameter Substitution Value

P1 ES-INDEX value
P2 CS-NDML-NO value
P3 If ES-TYPE equals C,

substitute X
If ES-TYPE does not equal
C, substitute 1.

P4 If ES-TYPE equals S,
substitute
999999999999999999 (18
nines)
If ES-TYPE does not equal

18-25

DS 62034120C

S, substitute the
character string
HIGH-VALUE

P5 LESS
P6 VAR

7.17.8 MAX

If ES-FCTN-NAME equals MAX, substitute the
following values into macro CTOE13.

Parameter Substition Value

P1 ES-INDEX value
P2 CS-NDML-NO valuc
P3 If ES-TYPE equals C,

substitute X
If ES-TYPE does not equal
C, substitute N

P4 If ES-TYPE equals S,
substitute
-99999999999999999
(minus followed by 17
nines)
If ES-TYPE does not equal
S, substitute the
character string LOW-VALUE

P5 GREATER
P6 If ES-TYPE equals S,

substitute VARN
If ES-:YPE does nct c:uals
S, substitute VAR

7.18 Generate in file 2 the EXIT-PROGRAN and part of the
DEL-PARA paragraphs using macro CTOEl4, substituting
* for P1.

7.19 Generate in file 2 the following DELFIL call.

CALL "DELFIL" USING MY-HOST, CDMESRES.

7.20 If any used ES-FCTN-DISTINCT equals Y, generate in
file 2 the following DELFIL call.

CALL "DELFIL" USING MY-HOST, CDMTMPFL.

7.21 If any used ES-FCTN-DISTINCT equals Y, generate the
distinct elimination Procedure Division logic using
macro CTOE15 which has no parameters.

18-26

DS 620341200

7.22 Append file 2 to file 1 by calling CDCWF after
closing both files. CDCWF requires the following
parameters:

FILE1 PIC X(30)
FILE2 PIC X(30)
MY-HOST PIC XXX

Upon return from CDCWF, file 1 will contain the
complete generated program and file 2 will not exist
(CDCWF deletes it). Move the name of file 1 to the
CDPRE8 output parameter GEN-FILE-NJ.1E. CASE 3
processing is now complete.

18.5 Outputs

1. GEN-FILE-NAI-E PIC X(30)

The file name containing the generated COBOL CS-ES
transform program.

2. RET-STATUS PIC X(5)

Error Status - A value equal to KES-SUCCESSFUL as
defined in copy member ERRCDM indicates successful
completion.

18-27

DS 620341200

LIBRARY NAME: VAX

MACRO NAME: CTOE1

PARAMETER: P1
IDENTIFICATION DIVISION.
PROGRAM-ID. PI.
* DESCRIPTION: THIS PROGRAM TRANSFORMS RETRIEVED CONCEPTUAL

DATA TO EXTERNAL FORMAT FOR AN AP.
ENVIRONMENT DIVISION.

18-28

DS 620341200

LIBRARY NAME: VAX

MACRO NA2E: CTOE10

PARAMETER: P1 - P2
STARTP1.

MOVE "R" TO DISPOSITION.
CALL "OPNFIL" USING FCB-ES-TEMP,

RET-STATUS,
CDMESRES,
DISPOSITION,
ES-RECORD-LENGTH,
NUMBER-OF-RECORDS.

IF RET-STATUS NOT = KES-FILE-OK
STRING "CDMESRES OPEN ERROR: " RET-STATUS

DELIMITED BY SIZE INTO MESG-DESC
PERFORM PROCESS-ERROR
GO TO EXIT-PROGRAM.

READP1.
CALL "INPFIL" USING FCB-ES-TEMP,

RET-STATUS,
WS-ES-REC,

WS-ES-BUFFER-LENGTH,
RETURN-LENGTH.

TF RET-STATUS NOT = KES-FILE-OK AND
RET-STATUS NOT = KES-END-OF-FILE-INPUT
STRING "WS-ES-REC READ ERROR: " RET-STATUS

DELIMITED BY SIZE INTO MESG-DESC
PERFORM PROCESS-ERROR
GO TO EXIT-PROGRAM.

IF RET-STATUS = KES-E!ND-OF-FILE-N!!PUT
MOVE WS-COUNT TO ES-VAR-P2-PI
MOVE ZERO TO WS-COUNT
MOVE ZERO TO ES-NULL-FLAG-PI
GO TO READP1-EXIT.

IF WS-NULL-FLAG-PI NOT = 1
ADD 1 TO WS-COUNT.

GO TO READP1.
READP1-EXIT.

EXIT.
CONTP1.

MOVE "K" TO DISPOSITION.
CALL "CLSFIL" USING FCB-ES-TEMP,

RET-STATUS,
DISPOSITION.

IF RET-STATUS NOT = KES-SUCCESSFUL
STRING "RESULTS FILE CLOSE ERROR: " RET-STATUS

DELIMITED BY SIZE INTO MESG-DESC
PERFORM PROCESS-ERROR

18-29

DS6231

GO TO EXIT-PROGRAM.

18-30

DS 620341200

LIBRARY NAME: VAX
IACRO NAME: CTOEII
PARAMETER: P1 - P2
STARTP1.

MOVE "R" TO DISPOSITION.
CALL "OPNFIL" USING FCB-ES-TEMP,

RET-STATUS,
CDMESRES,
DISPOSITION,
ES-RECORD-LENGTH,
NUMBER-OF-RECORDS.

IF RET-STATUS NOT = KES-FILE-OK
MOVE "ERROR OPENING FILE CDMESRES" TO MESG-DESC
PERFORM PROCESS-ERROR
GO TO EXIT-PROGRAM.

MOVE 1 TO ES-NULL-FLAG-PI.
READP1.

CALL "INPFIL" USING FCB-ES-TEMP,
RET-STATUS,
WS-ES-REC,
WS-ES-BUFFER-LENGTH,
RETURN-LENGTH.

IF RET-STATUS = KES-END-OF-FILE-INPUT
MOVE WS-SUM TO ES-VAR-P2-PI
MOVE ZERO TO WS-SUM
GO TO READPI-EXIT.

IF RET-STATUS NOT = KES-FILE-OK
MOVE "ERROR READING FILE CDMESRES" TO MESG-DESC
PERFORM PROCESS-ERROR
GO TO EXIT-PROGRAM.

IF WS-NULL-FLAG-PI NOT = 1
ADD WS-VAR-P2-PI TO WS-SUM
MOVE ZERO TO ES-NULL-FLAG-PI.

GO TO READP1.
READP1-EXIT.

EXIT.
CONTP1.

MOVE "K" TO DISPOSITION.
CALL "CLSFIL" USING FCB-ES-TEMP,

RET-STATUS,
DISPOSITION.

IF RET-STATUS NOT = KES-FILE-OK
MOVE "ERROR CLOSING FILE CDMESRES" TO MESG-DESC
PERFORM PROCESS-ERROR
GO TO EXIT-PROGRAM.

18-31

DS 620341200

LIBRARY NAME: VAX
IACRO NAME: CTOE12
PARAMETER: P1 - P2
STARTP1.

MOVE "R" TO DISPOSITION.
CALL "OPNFIL" USING FCB-ES-TEMP,

RET-STATUS,
CDMESRES,
DISPOSITION,
ES-RECORD-LENGTH,
NUMBER-OF-RECORDS.

IF RET-STATUS NOT = KES-FILE-OK
MOVE "ERROR OPENING FILE CDMESRES" TO MESG-DESC
PERFORM PROCESS-ERROR
GO TO EXIT-PROGRAM.

MOVE ZERO TO ES-NULL-FLAG-PI.
READP1.

CALL "INPFIL" USING FCB-ES-TEMP,
RET-STATUS,
WS-ES-REC,
WS-ES-BUFFER-LENGTH,
RETURN-LENGTH.

IF RET-STATUS = KES-END-OF-FILE-INPUT
PERFORM STARTPI-ZCHK
COMPUTE ES-VAR-P2-PI = WS-SUM / WS-COUNT
MOVE ZERO TO WS-SUM, WS-COUNT
GO TO READPl-EXIT.

IF RET-STATUS NOT = KES-FILE-OK
MOVE "ERROR READING FILE CDMESRES" TO MESG-DESC

PERFORM PROCESS-ERROR
GO TO EXIT-PROGRA!.

IF WS-NULL-FLAG-PI NOT = 1
ADD 1 TO WS-COUNT
ADD WS-VAR-P2-PI TO WS-SUM
GO TO READP1.

STARTP1-ZCHK.
IF WS-COUNT = ZERO

MOVE 1 TO WS-COUNT
MOVE 1 TO ES-NULL-FLAG-PI.

READPI-EXIT.
EXIT.

CONTP1.
MOVE "K" TO DISPOSITION.
CALL "CLSFIL" USING FCB-ES-TEMP,

RET-STATUS,
DISPOSITION.

IF RET-STATUS NOT = KES-FILE-OK
MOVE "ERROR CLOSING FILE CDMESRES" TO MESG-DESC
PERFORM PROCESS-ERROR

18-32

DS 620341200

GO TO EXIT-PROGRAM.

DS 620341200

LIBRARY NAM1E: VAX
A1CRO NAME: CTOE13
PARAMETER: P1 - P2 - P3 - P4- P5- P6
STARTP1.

MOVE "R" TO DISPOSITION.
CALL "OPNFIL" USING FCB-ES-TEMP,

RET-STATUS,
CDMESRES,
DISPOSITION,
ES-RECORD-LENGTH,
NUMBER-OF-RECORDS.

IF RET-STATUS NOT = KES-FILE-OK
MOVE "ERROR OPENING FILE CDMESRES" TO MESG-DESC
PERFORM PROCESS-ERROR
GO TO EXIT-PROGRAM.

MOVE P4 TO WS-COMP-P6
MOVE 1 TO ES-NULL-FLAG-PI.

PEADPI.
CALL "INPFIL" USING FCB-ES-TEMP,

RET-STATUS,
WS-ES-REC,
WS-ES-BUFFER-LENGTH,
RETURN-LENGTH.

IF RET-STATUS = KES-END-OF-FILE-INPUT
MOVE WS-COMP-VAR3 TO ES-VAR-P2-P1
GO TO READPI-EXIT.

IF RET-STATUS NOT = KES-FILE-OK
MOVE "ERROR READING FILE CDMESRES" TO MESG-DESC
PERFORM PROCESS-ERROR
GO TO EXIT-PROGRAM.

IF WS-NULL-FLAG-PI NOT = 1 AND
WS-VAR-P2-P1 P5 THAN WS-COMP-VARP3

MOVE ZERO TO ES-NULL-FLAG-PI
MOVE WS-VAR-P2-PI TO WS-COMP-VARP3.

GO TO READP1.
READP1-EXIT.

EXIT.
CONTP1.

MOVE "K" TO DISPOSITION.
CALL "CLSFIL" USING FCB-ES-TEMP,

RET-STATUS,
DISPOSITION.

IF RET-STATUS NOT = KES-FILE-OK
MOVE "ERROR CLOSING FILE CDMESRES" TO MESG-DESC
PERFOPM PROCESS-ERROR
GO TO EXIT-PROGRAM.

18-34

DS 620341200

LIBRARY NAM-1E: VAX

MtACRO NAIME: CTOE14

PARAMETER: P1

P1 EXIT PROGRAM.
EXIT-PROGRAM.

MOVE 1 TO EOF-FLAG.
P1 MOVE SPACES TO ES-REC.

PERFORM DEL-PARA.
EXIT PROGRAM.

COPY ERRPRO OF IISSCLIB.
DEL-PARA.

CALL "DELFIL" USING MY-HOST
CDMCSRES.

18-35

DS 620341200

LIBRARY NAME: VAX

MACRO NAME: CTOE15

PARAMETER:
CK-DISTINCT.

ADD 1 TO DSUB.
IF DSUB GREATER THAN 1000

MOVE "OVERFLOW OF UNIQUE VALUES TABLE" TO MESG-DESC
MOVE KES-TABLE-OVERFLOW TO RET-STATUS
PERFORM PROCESS-ERROR
GO TO EXIT-PROGRAM.

IF DISTINCT-ENTRY (DSUB) EQUAL SPACES
MOVE WS-COMP-VAR TO DISTINCT-VAR (DSUB)
CALL "OUTFIL" USING FCB-ES-TEMP,

RET-STATUS,
WS-ES-REC,
ES-RECORD-LENGTH

IF RET-STATUS = KES-FILE-OK
GO TO CK-DISTINCT-EXIT

ELSE
MOVE "ERROR WRITING TO FILE CDMESRES" TO MESG-DESC
PERFORM PROCESS-ERROR\
GO TO EXIT-PROGRAM.

IF DISTINCT-VAR (DSUB) EQUAL WS-COMP-VAR
GO TO CK-DISTINCT-EXIT.

GO TO CK-DISTINCT.
CK-DISTINCT-EXIT.

EXIT.
INITIALIZE-TABLE.

ADD 1 TO DSUB.
IF DSUB GREATER THAN 1000

MOVE ZERO TO DSUB
GO TO INITIALIZE-TABLE-EXIT.

MOVE SPACES TO DISTINCT-VAR (DSUB).
GO TO INITIALIZE-TABLE.

INITIALIZE-TABLE-EXIT.
EXIT.

18-36

DS 620341200

LIBRARY NAME: VAX

r-lACRO NAME: CTOE2

PARAMETER: P1
DATA DIVISION.
WORKING-STORAGE SECTION.
01 ES-TEMP-REC PIC X(P1).
01 ES-RECORD-LENGTH PIC S9(9) COMP VALUE Pl.

01 CS-REC.
03 CS-NULL-FLAGS.

18-37

DS 620341200

LIBRARY NAME: VAX

MIACRO NAM-E: CTOE3

PARAMETER:

* PART OF WORKING STORAGE WHEN FUNCTIONS PERFORMED NONE OF

* WHICH HAVE DISTINCT APPLIED.

01 WS-COUNT PIC S9(9) VALUE ZERO.
01 WS-SUM PIC S9(9)V9(9) VALUE ZERO.
0. WS-COMP-VAR.

03 WS-COMP-VARX PIC X(PI) VALUE SPACES.
03 WS-COMP-VARN REDEFINES WS-COMP-VARX PIC $9(9)V9(9).

18-33

DS b2O34l2CJ

L: BRARY AIl VAX

1UACRO N'AME: CTOE4

PARAMETER: P1 - P2 - P3

* COMI1ON WORKING STORAGE FOR ALL CASES

01 CDMCSRES PIC X(80) VALUE SPACES.
01 CDMESRES PIC X(80) VALUE SPACES.
01 CDMTMPFL PIC X(80) VALUE SPACES.
01 MY-HOST PIC XXX VALUE "P1".
01 MESG-DESC PIC X(60) VALUE SPACES.
01 MODULE-NAME PIG X(10) VALUE " P2"
01 FIRST-RECORD PIC S9(9) COMP.
01 FCB-ES-TEMP PIC S9(9) COMP.
01 FCB-TEMP-FILE PIC S9(9) COMP.
01 FCB-CS-INPUT PIC 59(9) COMP.
01 CS-RECORD-LENGTH PIC S9(9) COMP.
01 WS-ES-BUFFER-LENGTH PIC S9(9) COMP VALUE P3.
01 DISPOSITION PIG X.
01 NUMBER-OF-RECORDS PIG S9(9) COMP VALUE 2000.
01 RETURN-LENGTH PIG S9(9) COMP.
01 TEMP-RECORD-LENGTH PIG S9(9) COMP.
COPY CHKCDM OF IISSCLIB.
COPY ERRCDM OF IISSCLIB.
'C-PY ERRES OF IISSCLIB.

18-39

DS 620341206

LIBRARY NAME: VAX

M CRO NAME: CTOE4A

PARAMETER: P1
*

* PART OF WORKING STORAGE SECTION ADDED
* WHEN DISTINCT PROCESS AND FUNCTION PERFORMED
* ON VARIBLES.

01 WS-COMP-VAR.
03 WS-COMP-NULL-FLAG PIC 9.
03 WS-COMP-VARX PIC X(PI) VALUE SPACES.
03 WS-COMP-VARN REDEFINES WS-COMP-VARX PIC

$9 (9) V9 (9).

01 DSUB PIC S9999 VALUE ZERO.
01 DISTINCT-TABLE.

03 DISTINCT-ENTRY OCCURS 1000 TIMES.
05 DISTINCT-VAR.

07 FILLER PIC 9.
07 FILLER PIC X(P)

01 WS-COUNT PIC FL(E) VALUE ZERO.
01 WS-SUM PIC 59(9)V9(9) VALUE ZERO.

C*

18-40

DS 620341200

LIBRARY NAME: VAX

MACRO NAME: CTOE4B

PARAMETER: P1 - P2

*FIRST PART OF KEY AND FILE INFORMATION USED BY "NISSORT"
*TO CREATE SORT-KEY AND SUBSEQUENTLY SORT FILE. THIS MACRO
*IS ALWAYS FOLLOWED BY CTOE4C WHICH CONTAINS EXPLICIT VALUES

01 INPUT-FILE-P1.
03 FILE-NAME-P1 PIC X(80) VALUE SPACES.
03 FILE-REC-KEY-USED PIC 9(6) COMP VALUE P2.
03 FILLER PIC 9(6) COMP VALUE ZERO.

18-41

DS 6203412C00'

LIBRARY NAME: VAX

!IACRO NAME: CTOE4C

PARAMETER: P1 - P2 - P3 - P4

*SECOND PART Of KEY AND FILE INFORMATION USED BY "NISSORT"
*CONTAINS EXPLICIT VALUES.

03 FLE*IC96 OP

03 FILLER PIC S9(6) COMP.
03 FILLER PIC S9(6) COMP.VLE l
03 FILLER PIC S9(6) COMP VALUE P2.

03 FILLER PIC X VALUE "P3".
03 FILLER PIC S99 COMP.
03 FILLER PIC X VALUE "P4".

DS 620341200

LIBRARY NAME: VAX

MLACRO NAME: CTOE5

PARAMETER:

* LINKAGE SECTION FOR ALL CASES

LINKAGE SECTION.
INPUT ARGUMENTS.
01 CALL-FLAG PIC 9.

* EQUAL TO 1 IF FIRST TIME PROGRAM CALLED; 2 IF 2-?
* TIMES PROGRAM CALLED OR 3 IF PROGRAM IS TO QUIT
* EARLY

01 CDM-CS-RESULTS-FILE PIC X(s0).

* FILE NAME OF INPUTS TO CS-ES-RTN.

* OUTPUT ARGUMENTS

01 EOF-FLAG PIC 9.

* SET TO 1 IF NO MORE ES RECORDS TO BE SENT TO AP

01 RET-STATUS PIC X(5).
01 ES-NULL-FLAGS.

03 ES-NULL-FLAG-01 PIC 9.
03 ES-NULL-FLAG-02 PIC 9.
03 ES-NULL-FLAG-03 PIC 9.
03 ES-NULL-FLAG-04 PTC 9.
03 ES-NULL-FLAG-05 PIC 9.
03 ES-NULL-FLAG-06 PIC 9.
03 ES-NULL-FLAG-07 PIC 9.
03 ES-NULL-FLAG-08 PIC 9.
03 ES-NULL-FLAG-09 PIC 9.
03 ES-NULL-FLAG-10 PIC 9.
03 ES-NULL-FLAG-11 PIC 9.
03 ES-NULL-FLAG-12 PIC 9.
03 ES-NULL-FLAG-13 PIC 9.
03 ES-NULL-FLAG-14 PIC 9.
03 ES-NULL-FLAG-15 PIC 9.
03 ES-NULL-FLAG-16 PIC 9.
03 ES-NULL-FLAG-17 PIC 9.
03 ES-NULL-FLAG-18 PIC 9.
03 ES-NULL-FLAG-19 PIC 9.
03 ES-NULL-FLAG-20 PIC 9.
03 ES-NULL-FLAG-21 PIC 9.
03 ES-NULL-FLAG-22 PIC 9.

18-43

DS 620341200

03 ES-NULL-FLAG-23 PIC 9.
03 ES-NULL-FLAG-24 PlC 9.
03 ES -NU LL- FLAG-2 PIC 9.

01 ES-REC.

18-44

DS 620341200

LIBRARY NAME: VAX

MACRO NAME: CTOE5A

PARAMETER:

* THIS MACRO WRITES THE TEMPORARY ES FILE

MOVE WS-ES-REC TO ES-TEMP-REC.
CALL "OUTFIL" USING FCB-ES-TEMP,

RET-STATUS,

ES-TEMP-REC,
ES-RECORD-LENGTH.

IF RET-STATUS NOT = KES-FILE-OK
MOVE "ERROR WRITING TO FILE CDMESRES" TO MESG-DESC
PERFOP4 PROCESS-ERROR
GO TO EXIT-PROGRAM-1.

GO TO CS-ES-RTN.
CS-ES-RTN-EXIT.

EXIT.

18-45

DS 620341201Q-

LIBRARY NAME: VAX

MACRO NAME: CTOE6

PARAMETER:

* BEGINNING OF PROCEDURE DIVISION FOR CASE 2 SELECT
* CERTAIN FIELDS - NO FUNCTIONS, DISTINCTS OR ORDER
* BY.

PROCEDURE DIVISION USING CALL-FLAG,
CDM-CS-RESULTS-FILE,
CS-QUALIFY-VAR,
ES-NULL-FLAGS,
ES-REC,
EOF-FLAG,
RET-STATUS.

START-PROGRAM.
MOVE SPACES TO ES-REC.
MOVE ZERO TO EOF-FLAG.
MOVE KES-SUCCESSFUL TO RET-STATUS.
MOVE CDM-CS-RESULTS-FILE TO CDMCSRES.
IF CALL-FLAG = 3

MOVE "K" TO DISPOSITION
CALL "CLSFIL" USING F.CB-CS-INPUT,

RET-STATUS,
DISPOSITION

IF RET-STATUS NOT = KES-FILE-OK
MOVE "ERROR CLOSING FILE CDMCSRES"

TO MESG-DESC
PERFORM PROCESS-ERROR
GO TO EXIT-ROGRAM

ELSE
GO TO EXIT-PROGRAM.

IF CALL-FLAG = 1
MOVE "R" TO DISPOSITION
CALL "OPNFIL" USING FCB-CS-INPUT,

RET-STATUS,
CDMCSRES,
DISPOSITION,
CS-RECORD-LENGTH,
NUMBER-OF-RECORDS

IF RET-STATUS NOT = KES-FILE-OK
MOVE "ERROR OPENING FILE CDMCSRES"

TO MESG-DESC
PERFORM PROCESS-ERROR
GO TO EXIT-PROGRAM.

CS-ES-RTN.

18-46

DS 620341200

CALL "INPFIL" USING FCB-CS-INPUT,
RET-STATUS,
CS-REC,
CS-RECORD-LENGTH,
RETURN-LENGTH.

IF RET-STATUS = KES-END-OF-FILE-INPUT
MOVE "K" TO DISPOSITION
CALL "CLSFIL" USING FCB-CS-INPUT,

RET-STATUS,
DISPOSITION

IF RET-STATUS NOT = KES-FILE-OK
MOVE "ERROR CLOSING FILE CDMCSRES"

TO MESG-DESC
PERFORM PROCESS-ERROR
GO TO EXIT-PROGRAM

ELSE
GO TO EXIT-PROGRAN.

IF RET-STATUS NOT = KES-FILE-OK
MOVE "ERROR READING FILE CDMCSRES" TO MESG-DESC
PERFORM PROCESS-ERROR
GO TO EXIT-PROGRANI.

18 - 4 7

DS 620341200

LIBRARY NAME: VAX

MACRO NAME: CTOE6A

PARAMETER:

* BEGINNING OF PROCEDURE DIVISION FOR CASE3 - FUNCTIONS OR
* FUNCTION DISTINCTS. 1 OUTPUT RECORD.

PROCEDURE DIVISION USING CALL-FLAG,
CDM-CS-RESULTS-FILE,
CS-QUALIFY-VAR,
ES-NULL-FLAGS,
ES-REC,
EOF-FLAG,
RET-STATUS.

START-PROGRAM.
MOVE CDM-CS-RESULTS-FILE TO CDMCSRES.
MOVE SPACES TO ES-REC.
MOVE ZERO TO EOF-FLAG.
MOVE KES-SUCCESSFUL TO RET-STATUS.
IF CALL-FLAG = 3

GO TO EXIT-PROGR.M.
IF CALL-FLAG > 1

GO TO EXIT-PROGRAM.
CALL "NAMFIL" USING CDMESRES.
IF CDMESRES = LOW-VALUE
MOVE "TRYING TO GET TEMPORARY FILE NAMEl"

TO MESG-DESC
PERFORM PROCESS-ERROR
GO TO EXIT-PROGRAM.

CALL "NAMFIL" USING CDMT-lPFL.
IF CDMTMPFL = LOW-VALUE

MOVE "TRYING TO GET TEMPORARY FILE NAME2"
TO MESG-DESC

PERFORM PROCESS-ERROR
GO TO EXIT-PROGRAM.

MOVE "R" TO DISPOSITION.
CALL "OPNFIL" USING FCB-CS-INPUT,

RET-STATUS,

CDMCSRES,
DISPOSITION,
CS-RECORD-LENGTH,
NUMBER-OF-RECORDS.

IF RET-STATUS NOT = KES-FILE-OK
MOVE "ERROR OPENING FILE CDMCSRES" TO MESG-DESC
PERFORM PROCESS-ERROR
GO TO EXIT-PROGRAM.

DS 620341200

1OVE "W" TO DISPOSITION.
CALL "OPNFIL" USING FCB-ES-TEMP,

RET-STATUS,
CDMESRES,
DISPOSITION,
ES-RECORD-LENGTH,
NUMBER-OF-RECORDS.

IF RET-STATUS NOT = KES-FILE-OK
MOVE "ERROR OPENING FILE CDMESRES" TO MESG-DESC
PERFORM PROCESS-ERROR
GO TO EXIT-PROGRAM.

CS-ES-RTN.
CALL "INPFIL USING FCB-CS-INPUT,

RET-STATUS,
CS-REC,
CS-RECORD-LENGTH,
RETURN-LENGTH.

IF RET-STATUS = KES-END-OF-FILE-INPUT
MOVE "K" TO DISPOSITION
CALL "CLSFIL" USING FCB-CS-INPUT,

RET-STATUS,
DISPOSITION

IF RET-STATUS NOT = KES-FILE-OK
MOVE "ERROR CLOSING FILE CDMCSRES" TO MESG-DESC
PERFORM PROCESS-ERROR
GO TO EXIT-PROGRAM

ELSE
CALL "CLSFIL" USNG FCB-ES-TEMP,

RET-STATUS,
DISPOSITION

IF RET-STATUS NOT = KES-FILE-OK
MOVE "ERROR CLOSING FILE CDMESRES"

TO MESG-DESC
PERFORM PROCESS-ERROR

IF RET-STATUS NOT = KES-FILE-OK
GO TO EXIT-PROGRAM

MOVE "ERROR READING FILE CDMCSRES" TO MMESG-DESC
ELSE

PERFORM PROCESS-ERROR
GO TO EXIT-PROGRAM.

GO TO CS-ES-RTN-EXIT.

18-49

DS 620341200

LIBRARY NAME: VAX

MACRO NAME: CTOE6B

PARAMETER:

* BEGINNING OF PROCEDURE DIVISION FOR CASE2 WHERE
* ONE SORT IS REQUIRED.

PROCEDURE DIVISION USING CALL-FLAG,
CDM-CS-RESULTS-FILE,
CS-QUALIFY-VAR,
ES-NULL-FLAGS,
ES-REC,
EOF-FLAG,
RET-STATUS.

START-PROGRAM.
MOVE SPACES TO ES-REC.
MOVE ZERO TO EOF-FLAG.
MOVE KES-SUCCESSFUL TO RET-STATUS.
MOVE CDM-CS-RESULTS-FILE TO CDMCSRES.
IF CALL-FLAG = 3

MOVE "K" TO DISPOSITION
CALL "CLSFIL" USING FCB-TEMP-FILE,

RET-STATUS,
DISPOSITION

IF RET-STATUS NOT = KES-FILE-OK
MOVE "ERROR CLOSING FILE CDMTMPFL"

TO MESG-DESC
PERFORM PROCESS-ERROR
GO TO EXIT-PROGRAM

ELSE
GO TO EXIT-PROGRAM.

IF CALL-FLAG NOT EQUAL 1
GO TO RELEASE-RECORDS.

CALL "NAMFIL" USING CDMESRES.
IF CDMESRES = LOW-VALUE

MOVE "TRYING TO GET TEMORARY FILE-NAMEl"
TO MESG-DESC

PERFORM PROCESS-ERROR
GO TO EXIT-PROGRAM.

CALL "NAMFIL" USING CDMTMPEL.
IF CDMTMPFL = LOW-VALUE

MOVE "TRYING TO GET TEMPORARY FILE-NAME2"
TO MESG-DESC

PERFORM PROCESS-ERROR

18-50

DS 620341200

GO TO EXIT-PROGRAM.
MOVE "R" TO DISPOSITION.
CALL "OPNFIL" USING FCB-CS-INPUT,

RET-STATUS,
CDMCSRES,
DISPOSITION,
CS-RECORD-LENGTH,
NUMBER-OF-RECORDS.

IF RET-STATUS NOT = KES-FILE-OK
MOVE "ERROR OPENING FILE CDMCSRES" TO MESG-DESC
PERFORM PROCESS-ERROR
GO TO EXIT-PROGRAM.

MOVE "W" TO DISOSITION.
CALL "OPNFIL" USING FCB-ES-TEMP,

RET-STATUS,
CDMESRES,
DISPOSITION,
ES-RECORD-LENGTH,
NUMBER-OF-RECORDS.

IF RET-STATUS NOT = KES-FILE-OK
MOVE "ERROR OPENING FILE CDMESRES" TO MESG-DESC
PERFORM PROCESS-ERROR
GO TO EXIT-PROGRAM.

CS-ES-RTN.
CALL "INPFIL" USING FCB-CS-INPUT,

RET-STATUS,
CS-REC,
CS-RECORD-LENGTH,
RETURN-LENGTH.

IF RET-STATUS = KES-END-OF-FILE-INPUT
MOVE "K" TO DISPOSITION
CALL "CLSFIL" USING FCB-CS-INPUT,

RET-STATUS,
DISPOSITION

IF RET-STATUS NOT = KES-FILE-OK
MOVE "ERROR CLOSING FILE CDMCSRES" TO MESG-DESC
PERFORM PROCESS-ERROR
GO TO EXIT-PROGRAM

ELSE
CALL "CLSFIL" USING FCB-ES-TEMP,

RET-STATUS,
DISPOSITION

IF RET-STATUS NOT = KES-FILE-OK
MOVE "ERROR CLOSING FILE CDMESRES"

TO MESG-DESC
PERFORM PROCESS-ERROR
GO TO EXIT-PROGRAMI

ELSE
GO TO CS-ES-RTN-EXIT.

18-51

DS 620341200

IF RET-STATUS NOT = 1ES-FILE-OY
MOVE "ERROR READING FILE CDMCSREC" TO MESG-DESC
PERFORM PROCESS-ERROR
GO TO EXIT-PROGRAM.

18-52

DS 620341200

LIBRARY NAME: VAX

.1ACRO NAME: CTOE6B1

PARAMETER:
START-SORT.

MOVE CDMESRES TO FILE-NAME-I.
CALL "CDMPSOR" USING INPUT-FILE-I,

CDMTMPFL,

MESG-DESC,
RET-STATUS.

MOVE RET-STATUS TO QCS-CDMP-CHECK-STATUS.
IF NOT QCS-SUCCESSFUL

MOVE "SORT/MERGE PROGRAM FAILED" TO MESG-DESC
PERFORM PROCESS-ERROR
GO TO EXIT-PROGRAM.

MOVE "R" TO DISPOSITION.
CALL "OPNFIL" USING FCB-TEMP-FILE,

RET-STATUS,
CDMTMPFL,
DISPOSITION,
TEMP-RECORD-LENGTH,
NUMBER-OF-RECORDS.

IF RET-STATUS NOT = KES-FILE-OK
MOVE "ERROR OPENING FILE CDMTMPFL" TO MESG-DESC
PERFORM PROCESS-ERROR
GO TO EXIT-PROGRAM.

MOVE SPACES TO DST-REC.
RELEASE-RECORDS.

CALL "INPFIL" USING FCB-TEMP-FILE,
RET-STATUS,
WS-ES-REC,
WS-ES-BUFFER-LENGTH,
RETURN-LENGTH.

IF RET-STATUS = KES-END-OF-FILE-INPUT
MOVE "K" TO DISPOSITION
CALL "CLSFIL" USING FCB-TEMP-FILE,

RET-STATUS,
DISPOSITION

IF RET-STATUS NOT = KES-FILE-OK
MOVE "ERROR CLOSING FILE CDMTMPFL" TO MESG-DESC
PERFORM PROCESS-ERROR
GO TO EXIT-PROGRAM.!

ELSE
GO TO EXIT-PROGRAM.

IF RET-STATUS NOT = KES-FILE-OK
MOVE "ERROR READIN4G FILE CDMTMPFL" TO NESG-DESC
PERFORM PROCESS-ERROR

18-52

DS 620341200

GO TO EXIT-PROGRAM.
MOVE 0 TO EOF-FLAG.

18-54

DS 620341200

LIBRARY NAME: VAX

,!ACRO NAME: CTOE6C

PARAMETER

* BEGINNING OF PROCEDURE DIVISION FOR CASE1 WHEN IT
* REQUIRES 2 SORTS. (DISTINCT PROCESS AND ORDER BY WHERE
* ALL ORDER BY VARIBLES AREN'T PROJECTED)
*

PROCEDURE DIVISION USING CALL-FLAG,
CDM-CS-RESULTS-FILE,
CS-QUALIFY-VAR,
ES-NULL-FLAGS,
ES-REC,
EOF-FLAG,
RET-STATUS.

START-PROGRAM.
MOVE SPACES TO ES-REC.
MOVE ZERO TO EOF-FLAG.
MOVE KES-SUCCESSFUL TO RET-STATUS.
MOVE CDM-CS-RESULTS-FILE TO CDMCSRES.
IF CALL-FLAG EQUAL 3

MOVE "K" TO DISPOSITION
CALL "CLSFIL" USING FCB-TEMP-FLE.

RET-STATUS,
DISPOSITION

IF RET-STATUS NOT = KES-FILE-OK
MOVE "ERROR CLOSING FILE CDMTMPFL"

TO MESG-DESC
PERFORM PROCESS-ERROR
GO TO EXIT-PROGRAM

ELSE
GO TO EXIT-PROGRAM.

IF CALL-FLAG NOT EQUAL 1
GO TO RELEASE-SORT-RECS.

CALL "NAMFIL" USING CDMESRES.
IF CDMESRES = LOW-VALUE

MOVE "TRYING TO GET TEMORARY FILE-NAMEl"
TO MESG-DESC

PERFORM PROCESS-ERROR
GO TO EXIT-PROGRAM.

CALL "NAMFIL" USING CDr-NTMPFL.
IF CDMTMPFL = LOW-VALUE

MOVE "TRYING TO GET TEMPORARY FILE-NAME2"
TO MESG-DESC

PERFORM PROCESS-ERROR
GO TO EXIT-PROGRAM.

18-55

DS 6203412C,,.,

MOVE "R" TO DISPOSITION.
CALL "OPNFIL" USING FCB-CS-INPUT,

RET-STATUS,
CDMCSRES,
DISPOSITION,
CS-RECORD-LENGTH,
NUMBER-OF-RECORDS.

IF RET-STATUS NOT = KES-FILE-OK
MOVE "ERROR OPENING FILE CDMCSRES" TO MESG-DESC
PERFORM PROCESS-ERROR
GO TO EXIT-PROGRAM.

MOVE "W" TO DISPOSITION.
CALL "OPNFIL" USING FCB-ES-TEMP,

RET-STATUS,
CDMESRES,
DISPOSITION,
ES-RECORD-LENGTH,
NUMBER-OF-RECORDS.

IF RET-STATUS NOT = KES-FILE-OK
MOVE "ERROR OPENING FILE CDMESRES" TO MESG-DESC
PERFORM PROCESS-ERROR
GO TO EXIT-PROGRAM.

CS-ES-RTN.
CALL "INPFIL" USING FB-CS-INPUT,

RET-STATUS,
CS-REC,
CS-RECORD-LENGTH,
RETURN-LENGTH.

IF RET-STATUS = KES-END-OF-FILE-INPUT
MOVE "K" TO DISPOSITION

CALL "CLSFIL" USING FCB-CS-INPUT,
RET-STATUS,
DISPOSITION

IF RET-STATUS NOT = KES-FILE-OK
MOVE "ERROR IN CLOSING FILE CDMCSRES"

TO MESG-DESC
PERFORM PROCESS-ERROR
GO TO EXIT-PROGRAM

ELSE
CALL "CLSFIL" USING FCB-ES-TEMP,

RET-STATUS,
DISPOSITION

IF RET-STATUS NOT = KES-FILE-OK
ROVE "ERROR IN CLOSING FILE CDmESRES"

TO MESG-DESC
PERFORM PROCESS-ERROR
GO TO EXIT-PROGRAMI

ELSE
GO TO CS-ES-RTN-EXIT.

18-56

DS 620341200

IF RET-STATUS NOT = KES-FILE-OK
MOVE "ERROR IN READIN4G FILE CDMCSRES" TO MESG-DESC
PERFORM PROCESS-ERROR
GO TO EXIT-PROGRAM.

18-57

DS 620341200

LIBRARY NAME: VAX

MACRO NAME: CTOE6Cl

PARAMETER:
SORT01.

MOVE CDMESRES TO FILE-NAM.IE-I
CALL "CDMPSOR" USING INPUT-FILE-i

CDMTMPFL,

MESG-DESC,
RET-STATUS.

MOVE RET-STATUS TO QCS-CDMP-CHECK-STATUS.
IF NOT QCS-SUCCESSFUL

MOVE "SORT/MERGE PROGR.AM FAILED"
TO MESG-DESC

PERFORM PROCESS-ERROR
GO TO EXIT-PROGRAM.

MOVE "R" TO DISPOSITION.
CALL "OPNFIL" USING FCB-TEMP-FILE,

RET-STATUS,
CDMTMPFL,
DISPOSITION,
TEMP-RECORD-LENGTH,
NUMBER-OF-RECORDS.

IF RET-STATTUS '\OT = KES-FILE-OK
MOV4. ERROR OPENING FILE CDMTMPFL" TO MESG-DESC
PrRFORM PROCESS-ERROR
GO TO EXIT-PROGRAM.

MOVE "W" TO DISPOSITION.
CALL "OPNFIL" USING FCB-ES-TEMP,

RET-STATUS,
CDMESRES,
DISPOSITION,
ES-RECORD-LENGTH,
NUMBER-OF-RECORDS.

IF RET-STATUS NOT = KES-FILE-OK
MOVE "ERROR OPENING FILE CDMESRES" TO MESG-DESC
PERFORM PROCESS-ERROR
GO TO EXIT-PROGRAM.

MOVE ZERO TO FIRST-RECORD.
RELEASE-RECORDS.

CALL "INPFIL" USING FCB-TEMP-FILE,
RET-STATUS,
WS-ES-REC,
WS-ES-BUFFER-LENGTH,
RETURN-LENGTH.

IF RET-STATUS = KES-END-OF-FILE-INPUT
MOVE "K" TO DISPOSITION

18-53

DS 620341200

CALL "CLSFIL" USING FCB-TEMP-FILE,
RET-STATUS,
DIPSOSITION

IF RET-STATUS NOT = KES-FILE-OK
MOVE "ERROR CLOSING FILE CDNTMPFL" TO MESG-DESC
PERFORM PROCESS-ERROR
GO TO EXIT-PROGRAM

ELSE
CALL "CLSFIL" USING FCB-ES-TEMP,

RET-STATUS,
DISPOSITION

IF RET-STATUS NOT = KES-FILE-OK
MOVE "ERROR CLOSING FILE CDMESRES"

TO MESG-DESC
PERFORM PROCESS-ERROR
GO TO EXIT-PROGRAM

ELSE
GO TO SECOND-SORT.

IF RET-STATUS NOT = KES-FILE-OK
MOVE "ERROR READING FILE CDMTMPFL" TO MESG-DESC
PERFORM PROCESS-ERROR
GO TO EXIT-PROGRAM.

MOVE 0 TO EOF-FLAG.
ADD 1 TO FIRST-RECORD.

18-59

DS 62034120C

LIBRARY-NA-ME: VAX

MACRO NAME: CTOE6D

PARAMETER:
SECOND-SORT.

MOVE CDMESRES TO FILE-NAME-2.
CALL "CDMPSOR" USING INPUT-FILE-2

CDMTMPFL

MESG-DESC
RET-STATUS.

MOVE RET-STATUS TO QCS-CDMP-CHECK-STATUS.
IF NOT QCS-SUCCESSFUL

MOVE "SORT/MERGE PROGRAM FAILED" TO MESG-DESC
PERFORM PROCESS-ERROR
GO TO EXIT-PROGRAM.

MOVE "R" TO DISPOSITION.
CALL "OPNFIL" USING FCB-TEMP-FILE,

RET-STATUS,
CDMTMPFL,
DISPOSITION,
TEMP-RECORD-LENGTH,
NUMBER-OF-RECORDS.

IF RET-STATUS NOT = KES-FILE-OK
MOVE "ERROR OPENING FILE CDMTMPFL" TO MESG-DESC
PERFORM PROCESS-ERROR
GO TO EXIT-PROGRAM.

RELEASE-SORT-RECS.
CALL "INPFIL" USING FCB-TEMP-FILE,

RET-STATUS,
WS-ES-REC,
WS-ES-BUFFER-LENGTH,
RETURN-LENGTH.

IF RET-STATUS = KES-END-OF-FILE-INPUT
MOVE "K" TO DISPOSITION

CALL "CLSFIL" USING FCB-TEMP-FILE,
RET-STATUS,
DISPOSITION

IF RET-STATUS NOT = KES-FILE-OK
MOVE "ERROR CLOSING FILE CDMTMPFL" TO MESG-DESC
PERFORM PROCESS-ERROR
GO TO EXIT-PROGRAM

ELSE
GO TO EXIT-PROGRAM.

IF RET-STATUS NOT = KES-FILE-OK
MOVE "ERROR READING FILE CDMTMPFL" TO MESG-DESC
PERFORM PROCESS-ERROR
GO TO EXIT-PROGRAM.

18-60

DS 620341200

MOVE 0 TO EOF-FLAG.

18-61

DS 6203412,11

LIBRARY NAI.E: VAX

MACRO NAME: CTOE7

PARAMETER: P1 - P2
STARTP1.

MOVE "R" TO DISPOSITION.
CALL "OPNFIL" USING FCB-ES-TEMP,

RET-STATUS,
CDMESRES,
DISPOSITION,
ES-RECORD-LENGTH,
NUMBER-OF-RECORDS.

IF RET-STATUS NOT = KES-FILE-OK
MOVE "ERROR OPENING FILE CDMESRES" TO MESG-DESC
PERFORM PROCESS-ERROR
GO TO EXIT-PROGRAM.

MOVE "W" TO DISPOSITION.
CALL "OPNFIL" USING FCB-TEMP-FILE,

RET-STATUS,
CDMTMPFL,
DISPOSITION,
TEMP-RECORD-LENGTH,
NUMBER-OF-RECORDS.

IF RET-STATUS NOT = KES-FILE-OK
MOVE "ERROR OPENING FILE CDMTMPFL" TO MESG-DESC

PERFORM PROCESS-ERROR
GO TO EXIT-PROGRAM.

MOVE ZERO TO DSUB.
PERFORM INITIALIZE-TABLE THRU INITIALIZE-TABLE-EXIT.

READP1.
CALL "INPFIL" USING FCB-ES-TEMP,

RET-STATUS,
WS-ES-REC,
WS-ES-BUFFER-LENGTH,
RETURN-LENGTH.

IF RET-STATUS = KES-END-OF-FILE-INPUT
GO TO READPI-EXIT.

IF RET-STATUS NOT = KES-FILE-OK
MOVE "ERROR READING FILE CDMESRES" TO MESG-DESC

PERFORM PROCESS-ERROR
GO TO EXIT-PROGRAM.

MOVE WS-VAR-P2-P1 TO WS-COMP-VARP3.
MOVE WS-NULL-FLAG-PI TO WS-COMP-NULL-FLAG.
MOVE ZERO TO DSUB.
PERFORM CK-DISTINCT THRU CK-DISTINCT-EXIT.
GO TO READP1.

18-62

DS 620341200

READP1-EXIT.
EXIT.

CONTP1.
MOVE "K" TO DISPOSITION.
CALL "CLSFIL" USING FCB-TEMP-FILE,

RET-STATUS,
DISPOSITION.

IF RET-STATUS NOT = KES-FILE-OK
MOVE "ERROR CLOSING FILE CDMTMPFL" TO MESG-DESC
PERFORM PROCESS-ERROR
GO TO EXIT-PROGRAM.

MOVE "R" TO DISPOSITION.
CALL "OPNFIL" USING FCB-TEMP-FILE,

RET-STATUS,
CDMTMPFL,
DISPOSITION,
TEMP-RECORD-LENGTH,
NUMBER-OF-RECORDS.

IF RET-STATUS NOT = KES-FILE-OK
MOVE "ERROR OPENING FILE CDMTMPFL" TO MESG-DESC

PERFORM PROCESS-ERROR
GO TO EXIT-PROGRAM.

READ-TEMPP1.
CALL "INPFIL" USING FCB-TEMP-FILE,

RET-STATUS,
WS-ES-REC,
WS-ES-BUFFER-LENGTH,
RETURN-LENGTH.

IF RET-STATUS = KES-END-OF-FILE-INPUT
MOVE WS-COUNT TO ES-VAR-P2-PI
MOVE ZERO TO WS-COUNT
MOVE ZERO TO ES-NULL-FLAG-PI
GO TO READ-TEMPPI-EXIT.

IF RET-STATUS NOT = KES-FILE-OK
MOVE "ERROR READING FILE CDMTMPFL" TO MESG-DESC
PERFORM PROCESS-ERROR
GO TO EXIT-PROGRAM.

IF WS-NULL-FLAG-PI NOT = 1
ADD 1 TO WS-COUNT.

GO TO READ-TEMPP1.
READ-TEMPPI-EXIT.

EXIT.
CONTPIA.

MOVE "K" TO DISOSITION.
CALL "CLSFIL" USING FCB-TEMP-FILE,

RET-STATUS,
DISPOSITION.

IF RET-STATUS NOT = KES-FILE-OK
MOVE "ERROR CLOSING FILE CDMTMPFL" TO MESG-DESC

18-63

DS 620341200

PERFOPRN PROCESS-ERROR
GO TO EXIT-PROGRAM.

CALL "CLSFIL" USIN4G FCB-ES-TENIP,
RET-STATUS,
DISPOSITION.

IF RET-STATUS NOT = KES-FILE-OK
MOVE "ERROR CLOSING FILE CDMESRES" TO MESG-DESC
PERFORM PROCESS-ERROR
GO TO EXIT-PROGRAM.

18-64

DS 620341200

LIBRARY NAME: VAX

*-ACRO NAME: CTOES

PARAM ETER: P1 - P2
STARTP1.

MOVE "R" TO DISPOSITION.
CALL "OPNFIL" USING FCB-ES-TEMP,

RET-STATUS,
CDMESRES,
DISPOSITION,
ES-RECORD-LENGTH,
NUMBER-OF-RECORDS.

IF RET-STATUS NOT = KES-FILE-OK
MOVE "ERROR OPENING FILE CDMESRES" TO MESG-DESC
PERFORM PROCESS-ERROR
GO TO EXIT-PROGRAM.

MOVE "W" TO DISPOSITION.
CALL "OPNFIL" USING FCB-TEMP-FILE,

RET-STATUS,
CDMTMPFL,
DISPOSITION,
TEMP-RECORD-LENGTH,
NUMBER-OF-RECORDS.

IF RET-STATUS NOT = KES-FILE-OK
MOVE "ERROR OPENING FILE CDMTMPFL" TO MESG-DESC
PERFORM PROCESS-ERROR
GO TO EXIT-PROGRAM.

MOVE ZERO TO DSUB.
PERFORM INITIALIZE-TABLE THRU INITIALIZE-TABLE-EXIT.

READP1.
CALL "INPFIL" USING FCB-ES-TEMP,

RET-STATUS,
WS-ES-REC,
WS-ES-BUFFER-LENGTH,
RETURN-LENGTH.

IF RET-STATUS = KES-END-OF-FILE-INPUT
GO TO READPI-EXIT.

IF RET-STATUS NOT = KES-FILE-OK
MOVE "ERROR READING FILE CDMESRES" TO MESG-DESC
PERFORM PROCESS-ERROR
GO TO EXIT-PROGRAM.

MOVE WS-VAR-P2-PI TO WS-COMP-VARP3.
MOVE WS-NULL-FLAG-PI TO WS-COMP-NULL-FLAG.
MOVE ZERO TO DSUB.
PERFORM CK-DISTINCT THRU CK-DISTINCT-EXIT.
GO TO READP1.

READPI-EXIT.
EXIT.

18-65

DS 620341200

CONTP1.
MOVE "K" TO DISPOSITION.
CALL "CLSFIL" USING FCB-TEMIP-FILE,

RET-STATUS,
DISPOSITION.

IF RET-STATUS NOT = KES-FILE-OK
MOVE "ERROR CLOSING FILE CDMTMPFL" TO MESG-DESC
PERFORM PROCESS-ERROR
GO TO EXIT-PROGRAM.

MOVE "R" TO DISPOSITION.
CALL "OPNFIL" USING FCB-TEMP-FILE,

RET-STATUS,
CDMTMPFL,
DISPOSITION,
TEMP-RECORD-LENGTH,
NUMBER-OF-RECORDS.

IF RET-STATUS NOT = KES-FILE-OK
MOVE "ERROR OPENING FILE CDMTMPFL" TO MESG-DESC
PERFORM PROCESS-ERROR
GO TO EXIT-PROGRAM.

MOVE 1 TO ES-NULL-FLAG-PI.
READ-TEMPP1.

CALL "INPFIL" USING FCB-TEMP-FILE,
RET-STATUS,
WS-ES-REC,
WS-ES-BUFFER-LENGTH,
RETURN-LENGTH.

IF RET-STATUS = KES-END-OF-FILE-INPUT
MOVE WS-SUM TO ES-VAR-P2-PI
MOVE ZERO TO WS-SUM
GO TO READ-TEMPP1-EXIT.

IF RET-STATUS NOT = KES-FILE-OK
MOVE "ERROR READIN FILE CDMTMPFL" TO MESG-DESC
PERFORM PROCESS-ERROR
GO TO EXIT-PROGRAM.

IF WS-NULL-FLAG-PI NOT = 1
ADD WS-VAR-P2-PI TO WS-SUM
MOVE ZERO TO ES-NULL-FLAG-PI.

GO TO READ-TEMPP1.
READ-TEMPPI-EXIT.

EXIT.
CONTP1A.

MOVE "K" TO DISPOSITION.
CALL "CLSFIL" USING FCB-TEM-FILE,

RET-STATUS,
DISPOSITION.

IF RET-STATUS NOT = KES-FILE-OK
MOVE "ERROR CLOSING FILE CDMTMPFL" TO MESG-DESC
PERFORM PROCESS-ERROR

18-66

DS 620341200

GO TO EXIT-PROGRAM.
CALL "CLSFIL" USING FCB-ES-TEMP,

RET-STATUS,
DISPOSITION.

IF RET-STATUS NOT = KES-FILE-OK
MOVE "ERROR CLOSING FILE CDMESRES" TO MESG-DESC
PERFORM PROCESS-ERROR
GO TO EXIT-PROGRAM.

18-67

DS 620311200

LIBRARY NAME: VAX

MIACRO NAME: CTOE9

PARAMETER: PI - P2
STARTPI.

MOVE "R" TO DISPOSITION.
CALL "OPNFIL" USING FCB-ES-TEMP,

RET-STATUS,
CDMESRES,
DISPOSITION,
ES-RECORD-LENGTH,
NUMBER-OF-RECORDS.

IF RET-STATUS NOT = KES-FILE-OK
MOVE "ERROR OPEN4ING FILE CDMESRES" TO MESG-DESC
PERFORM PROCESS-ERROR
GO TO EXIT-PROGRA.M.

MOVE "W" TO DISPOSITION.
CALL "OPNFIL" USING FCB-TEMP-FILE,

RET-STATUS,
CDMTMPFL,
DISPOSITION,
TEMP-RECORD-LENGTH,
NUMBER-OF-RECORDS.

IF RET-STATUS NOT = KES-FILE-OK
MOVE "ERROR OPENING FILE CDMTMPFL" TO MESG-DESC
PERFORM PROCESS-ERROR
GO TO EXIT-PROGRAM.

MOVE ZERO TO DSUB.
PERFORM INITIALIZE-TABLE THRU INITIALIZE-TABLE-EXIT.

READP1.
CALL "INPEIL" USING FCB-ES-TE,"P,

RET-STATUS,
NS-ES-REC,
WS-ES-BUFFER-LENGTH,
RETURN-LENGTH.

IF RET-STATUS = KES-END-OF-FILE-INPUT
GO TO READP1-EXIT.

IF RET-STATUS NOT = KES-FILE-OK
MOVE "ERROR READING FILE CDMESRES" TO MESG-DESC
PERFORM PROCESS-ERROR
GO TO EXIT-PRO-RAM.

MOVE WS-VAR-P2-P1 TO V-,S-COMP-VARP3.
MOVE WS-NULL-FLAG-Pl TO WS-CCO::P-,NULL- FLAG.
MOVE ZERO TO DSUB.
PERFORM CK-DISTIN4CT THRU CK-DISTINCT-EXIT.
GO TO READP1.

READP1-EXIT.
EXIT.

18-63

DS 620341200

CONTP1.
MOVE "K" TO DISPOSITION.
CALL "CLSFIL" USING FCB-TEMP-FILE,

RET-STATUS,
DISPOSITION.

IF RET-STATUS NOT = KES-FILE-OK
MOVE "ERROR CLOSING FILE CDMTMPFL" TO MESG-DESC
PERFORM PROCESS-ERROR
GO TO EXIT-PROGRAM.

MOVE "R" TO DISPOSITION.
CALL "OPNFIL" USING FCB-TEMP-FILE,

RET-STATUS,
CDMTMPFL,
DISPOSITION,
TEMP-RECORD-LENGTH,
NUMBER-OF-RECORDS.

IF RET-STATUS NOT = KES-FILE-OK
MOVE "ERROR OPENING FILE CDMTMPFL" TO MESG-DESC
PERFORM PROCESS-ERROR
GO TO EXIT-PROGRAM.

MOVE ZERO TO ES-NULL-FLAG-PI.
READ-TEMPP1.

CALL "INPFIL" USING FCB-TEMP-FILE,
RET-STATUS,
WS-ES-REC,
WS-ES-BUFFER-LENGTH,
RETURN-LENGTH.

IF RET-STATUS = KES-END-OF-FILE-INPUT
PERFORM STARTP1-ZCHK
COMPUTE ES-VAR-P2-PI = WS-SUM / WS-COUNT
MOVE ZERO TO WS-SUM, WS-COUNT
GO TO READ-TEMPPl-EXIT.

IF RET-STATUS NOT = KES-FILE-OK
MOVE "ERROR OPENING FILE CDMTMPFL" TO MESG-DESC
PERFORM PROCESS-ERROR
GO TO EXIT-PROGRAM.

IF WS-NULL-FLAG-PI NOT = 1
ADD WS-VAR-P2-PI TO WS-SUM
ADD 1 TO WS-COUNT.

GO TO READ-TEMPP1.
STARTPI-ZCHK.

IF WS-COUNT = ZERO
MOVE 1 TO WS-COUNT
MOVE 1 TO ES-NULL-FLAG-PI.

READ-TEMPPI-EXIT.
EXIT.

CONTPIA.
MOVE "K" TO DISPOSITION.
CALL "CLSFIL" USING FCB-TEMP-FILE,

18-69

DS 62034212.

RET-STATUS,
DISPOSITION.

IF RET-STATUS NOT = KES-FILE-OK
MOVE "ERROR CLOSING FILE CDMTMPFL" TO MESG-DESC
PERFORM PROCESS-ERROR
GO TO EXIT-PROGRAM.

CALL "CLSFIL" USING FCB-ES-TEMP,
RET-STATUS,
DISPOSITION.

IF RET-STATUS NOT = KES-FILE-OK
MOVE "ERROR CLOSING FILE CDMESRES" TO MESG-DESC
PERFORM PROCESS-ERROR
GO TO EXIT-PROGRAM.

18-70

DS 620341200

LIBRARY NAME: VAX

M.ACRO NAME: CTOE18

PARAMETER:

NEXT SENTENCE
ELSE

GO TO CS-ES-RTN.

18-71

DS 62034120C

LIBRARY NAME: VAX

-ACRO NAME: CTOE19

PARAMETER:
MOVE WS-ES-REC TO ES-TEMP-REC.
CALL "OUTFIL" USING FCB-ES-TEMP,

RET-STATUS,
ES-TEMP-REC,
ES-RECORD-LENGTH.

IF RET-STATUS NOT = KES-FILE-OK
MOVE "ERROR WRITING TO FILE CDMESRES"

TO MESG-DESC
PERFORM PROCESS-ERROR
GO TO EXIT-PROGRAM.

GO TO RELEASE-RECORDS.

18-72

DS 620341200

LIBRARY NAME: VAX

MACRO NAME: CTOE20

PARAMETER:
IF WS-ES-REC = DST-REC

GO TO RELEASE-RECORDS.
MOVE WS-ES-REC TO DST-REC.

18-73

DS 620341200

SECTION 19

Function PREBC - Generate CS-Selector Program

This function generates COBOL source code according to the
ANSI X3.23-1974 standard which, at runtime performs the final
qualification on conceptual rows, a file at a time, for the
inner SELECT statements of a compound SELECT statement. There
are no CS-ES transforms performed by the CS-Selector.

19.1 Inputs

1. TARGET-HOST PIC XXX

Host upon which the CS-Selector program will execute
at runtime.

2. MY-HOST PIC XXX

Host upon which CDPRESC executes at precompile time.

3. MOD-NAME PIC X(10)

The program identification name of the CS-Selector
program.

4. CS-ACTION-LIST included in CSAL copy member

Conceptual representation of the fields to be
retrieved.

5. CS-QUALIFY-LIST included in CSQUAL copy member

Conceptual representation of the WHERE clause.

6. BOOLEAN-LIST

Contains information about boolean operators and
parenthesized logic from the WHERE clause.

7. IS-QUALIFY-LIST
Internal representation of the WHERE clause.

8. ES-ACTION-LIST.

External representation of the fields to be
retrieved.

19-1

DS 620341200

19.2 CDM Requirements

None

19.3 Internal Requirements
None

Macro Generation

Macros are code templates with optional substitutable
parameters which allow generated code to be more independent of
the generating programs. All macros are to be generated throuqh
calls to CDMACR. This routine requires the following
parameters:

Inout
FILE-NAME PIC X(30) included in MACDAT copy member
LIBRARY-NAME PIC X(30) included in I.ACDAT copy menber
MACRO-NAME PIC X(8) included in MACDAT copy member
SUBSTITUTION-LIST included in SBSTLST copy member

Output
RET-STATUS PIC X(5)

FILE-NAME contains the name of the file to which code is to
be generated. This file must be closed prior to the CDMACR
call. Upon return to CDPRE8C, FILE-NAME must be reopened for
EXTEND to allow code to be generated at the end of the file.

LIBRARY-NAME contains the name of the host upon which the
generated code will execute at runtime. This value is identical
to the CDPRE8C input parameter TARGET-HOST.

MACRO-NAME contains the name of the macro to be generated,

for example CSSEL01.

SUBSTITUTION-LIST is described by the following structure:

01 SUBSTITUTION-LIST
03 SL-USED PIC 99
03 SL-MAX PIC 99
03 SL-ROW-SIZE PIC 99
03 SL-ENTRY OCCURS 8 TIMES

INDEXED BY SL-INDEX
05 SL-PARAMETER PIC X(30)
05 SL-SUBSTVAL PIC X(30)

SUBSTITUTION-LIST is populated by setting SL-USED to the

19-2

DS 620341200

number of parameter values the macro requires. SL-PARAMETER
(index) contains the macro parameter to be substituted for, for
example P1. SL-SUBST-VAL (index) contains the corresponding
substitution value, for example CS-NDML-NO.

19.4 Processing

1. Generate a unique file name to contain the generated
COBOL code by calling GENFIL. GENFIL requires
MY-HOST as an input parameter and returns the 30
character file name and the 5 character status.
This file name must be moved to the CDPRE8C output
parameter GEN-FILE-NPOIE.

2. Determine which case is being handled. The case
definitions are:

CASE 1 - A conceptual IF must be generated for final
qualification.

CASE 1 applies when at least 1 used IS-QUALIFY
entry has ISQ-EVAL-FLAG equal zero.

CASE 2 - No conceptual IF is to be generated.

CASE 2 applies when no used ISQ-EVAL-FLAG has a
zero value.

CASE 3 - Code to distinct the results must be generated.

CASE 3 applies when there was a DISTINCT on an
inner select of a combination query, or if
distinct rows were specified to be selected when
the external view was created. In either of
these cases, ES-DISTINCT-FLAG will be set to
"Y11.

3. Processing for CASE 1

3.1 Generate the Identification Division through part of
the file section by substituting the contents of
CDPRE8C input parameter MOD-NAME for parameter P1 in
macro
CSSEL01.

3.2 For each CS field, generate the CS null flags
according to the following format:

19-3

DS 620341200

05 CS-NULL-FLAG-xx PIC 9.

05 CS-NULL-FLAG-yy PIC 9.

where xx through yy are the values of CS-INDEX. The
05 must start in column 16.

3.3 Generate each CS field description using the
CS-TYPE, CS-SIZE and CS-ND fields. Use routine
CDPIC to generate the picture clauses.

03 CS-VARxx pic clause.

03 CS-VARyy pic clause.

where xx through yy are the values of CS-INDEX and
pic clause is the picture clause generated by CDPIC.

3.4 Compute the conceptual schema record size by summing
all used CS-SIZEs together. For each conceptual
field, add 1 additional position of the field's null
flag.

3.5 Generate the end of the file section through part of
the linkage section by substituting the value
computed in the previous step for parameter P1, the
value contained in input parameter TARGET-HOST for
P2 and the value contained in input parameter
MOD-NA!IE for P3 in macro CSSEL02.

3.6 Generate the names and picture clauses for the
Conceptual Schema qualify variables which will be
passed to the generated program at runtime.

For each CSQ element with CSQ-AUCR equal zero,
generate the following:

03 CSQ-VAR-nn pic clause.

where nn is the CSQ-INDEX value. Call CDPIC using
the corresponding CSQ-L-TYPE, CSQ-L-SIZE and
CSQ-L-ND to generate the picture clause.

3.7 Generate the beginning of the Procedure Division

19-4

DS 620341200

using macro CSSEL03 which has no parameters.

3.8 Call CDGENIF to generate the IF clauses to perform
the qualification on the returned conceptual rows.
CDGENIF requires the following parameters:

Input
BOOLEAN-LIST
CS-QUALIFY-LIST
CS-ACTION-LIST
IS-QUALIFY-LIST
FILE-NAME PIC X(30)

FILE-NAME must contain the file name generated in
step 1.
This file must be closed prior to the CDGENIF call.

If CDGENIF is successful (RET-STATUS equals
KES-SUCCESSFUL) generate on the reopened for EXTEND
file, the macro CSSEL04 which terminates the
program.

Processing is now complete for CASE 1.

4. Processing for CASE 2

Generate the complete CASE 2 CS-Selector program by
substituting the value of CDPRE8C input parameter
MOD-NAME for parameter P1 and the value contained in
input parameter TARGET-HOST for P2 in macro CSSEL05.

Processing is now complete for CASE 2.

5. Processing for CASE 3

5.1 Calculate the conceptual schema record size by
summing all used CS-SIZEs together. For each
conceptual field, add 1 additional position of the
fields null flag.

5.2 Generate the Identification Division through part of
the WORKING-STORAGE section by substituting the
contents of CDPRE8C input parameter MOD-NAME for
parameter P1 and the value calculated in the
previous step for parameter P2 in macro CSSEL06.

5.3 For each CS field, generate the CS null flags
according to the following format:

19-5

DS 620341200

05 CS-NULL-FLAG-xx PIC 9.

05 CS-NULL-FLAG-yy PIC 9.

where xx through yy are the values of CS-INDEX. The
05 must start in column 16.

5.4 Generate each CS field description using the
CS-TYPE, CS-SIZE and CS-ND fields. Use routine
CDPIC to generate the picture clauses.

03 CS-VARxx pic clause.

03 CS-VARyy pic clause.

where xx through yy are the values of CS-INDEX and
pic clause is the picture clause generated by CDPIC.

5.5 A sort buffer must be generated. To generate the
first part of the sort buffer, use macro CTOE4B
(this macro is shared with CDPRE8) substituting the
value 1 for P1 and 2 times the number of non-deleted
CS entries for P2.

5.6 For each CS field, generate 2 sort buffer elements
using macro CTOE4C, one for the field's null flag
with one for the CS field itself. (Macro CTOE4C is
shard with CDPRE8.)

To generate the sort buffer for a field's null flag,
use macro CTOE4C, substituting the value of CS-INDEX
for P1 (sort key starting position), the value 1 for
P2 (sort key length), the value N for P3 (sort key
type) and the value A for P4 (ascending sort).

To generate the sort buffer for the field itself, a
running total must be kept of CS-SIZEs. This value

19-6

DS 620341200

will be used in the calculation of the field's
starting position. In macro CTOE4C, add 1, CS-USED
and the running total described above to generate
the value to substitute for P1.

Substitute the value of the current CS-SIZE for P2
(sort key length), the value of the current CS-TYPE
for P3 (sort key type) and the value A for P4
(ascending sort).

5.7 Generate the end of the file section through part of
the linkage section by substituting the value
computed in the previous step for parameter P1, the
value contained in input parameter TARGET-HOST for
P2 and the value contained in input parameter
MOD-NAME for P3 in macro CSSEL02.

5.8 Generate the names and picture clauses for the
Conceptual Schema qualify variables which will he
passed to the generated program at runtime.

For each CSQ element with CSQ-AUCR equal zero,

generate the following:

03 CSQ-VAR-nn pic clause.

where nn is the CSQ-INDEX value. Call CDPIC using
the corresponding CSQ-L-TYPE, CSQ-L-SIZE and
CSQ-L-ND to generate the picture clause.

If there are no CSQ elements with CSQ-AUCR equal

zero, generate:

03 CSQ-VAR-01 PIC X.

5.9 Generate the beginning of the Procedure Division,
two calls to NAMFIL, two calls to OPNFIL, and one
call to INPFIL using macro CSSEL07 which has no
parameters.

5.10 If at least 1 used IS-QUALIFY entry has
ISQ-EVAL-FLAG equal zero, perform the following two
steps:

5.10.1 Call CDGENIF to generate the IF clauses to
perform the qualification on the returned
conceptual rows. CDGENIF requires the
following parameters:

19-;

DS 62034120(

Input
BOOLEAN-LIST
CS-QUALIFY-LIST
CS-ACTION-LIST
IS-QUALIFY-LIST
FILE-NAME PIC X(30).

5.10.2 FILE-NAME must contain the file name
generated in step 1. This file must be
closed prior to the CDGENIF call.

If CDGENIF is successful (RET-STATUS equals
KES-SUCCESSFUL) generate on the reopened for
EXTEND files the macro CSSEL08.

5.11 Generate a call to OUTFIL, the call to CDMPSOR, and
the logic to transfer distinct records from the
temporary file to the output file using macro
CSSEL09 w his no rarareterc.

19.5 Outputs

1. GEN-FILE-NAME PIC X(30)

The file name containing the generated COBOL program.

2. RET-STATUS PIC X(5)

Error Status. A value equal to KES-SUCCESSFUL as
defined in the ERRCDM copy member indicates
successful completion.

19-8

DS 620341200

Macro - CSSEL01

Library Name - VAX
I!

Parameters - P1

IDENTIFICATION DIVISION.
PROGRAM-ID. P1.
ENVIRONMENT DIVISION.
DATA DIVISION.

WORKING-STORAGE SECTION.
01 CS-INREC.

03 CS-IN-NULL-FLAGS.

19-9

DS 620341200G

Macro - CSSEL02

Library NAime - VAX

Parameters - Pi
P2
P3

01 CS-OUTREC PIC X(P1).
01*MSE PCX8)

01 CDMCSRES PIC X(80).

01 MY-HOST PIC XXX VALUE "P2".
01 MESG-DESC PIC X(60) VALUE SPACES.
01 MODULE-NAME PIC X(10) VALUE " P3"
01 FC-B-CS-INPUT PIC S9(9) COMP.
01 FCB-CS-OUTPUT PIC 59(9) Comp.
01 DISPOSITION PIC X.
01 NUMBER-OF-RECORDS PlC S9(9) COMP VALUE 2000.
01 CS-RECORD-LENGTH PIC X9(9) COMP.
01 CS-RETURN-LENGTH PIC S9(9) COMP.
01 CS-OUT-RECORD-LENGTH PIC S9(9) COMP VALUE P1.

COY*KD.O ISLB

COPY CHKCDM OF IISSCLIB.
COPY ERRCDM OF IISSCLIB.

LINKAGE SECTION.
01 IN-FILE-NAME PIC X(80).
01 IN-COUNT PIC S9(9) COMP.
01 OUT-FILE-NAME PIC X(80).
01 OUT-COUNT PIC S9(9) COMP.
01 RET-STATUS PIC X(5).
01 CS-QUALIFY-VAR.

19-10

DS 620341200

Macro - CSSEL03

Library Name - VAX

Parameters - none

PROCEDURE DIVISION USING IN-FILE-NAME,
IN-COUNT,
CS-QUALIFY-VAR,
OUT-FILE-NAME,
OUT-COUNT,
RET-STATUS.

START-PROGRAM.
MOVE ZERO TO OUT-COUNT.
MOVE KES-SUCCESSFUL TO RET-STATUS.
MOVE IN-FILE-NAME TO CDMCSRES.
CALL "NAMFIL" USING OUT-FILE-NAME.
IF OUT-FILE-NAME EQUAL LOW-VALUE

MOVE "UNABLE TO GENERATE OUTFILE" TO MESG-DESC
PERFORM PROCESS-ERROR
GO TO EXIT-PROGRAM.

MOVE OUT-FILE-NAME TO CDMCSOUT.
MOVE "R" TO DISPOSITION.
CALL "OPNFIL" USING FCB-CS-INPUT,

RET-STATUS,
CDMCSRES,
DISPOSITION,
CS-RECORD-LENGTH,
NUMBER-OF-RECORDS.

IF RET-STATUS NOT = KES-FILE-OK
MOVE "ERROR OPENING CDMCSRES" TO MESG-DESC
PERFORM PROCESS-ERROR
GO TO EXIT-PROGRAM.

MOVE "W" TO DISPOSITION.
CALL "OPNFIL" USING FCB-CS-OUTPUT,

RET-STATUS,
CDMCSOUT,
DISPOSITION,
CS-OUT-RECORD-LENGTH,
NUMBER-OF-RECORDS.

IF RET-STATUS NOT = KES-FILE-OK
MOVE "ERROR OPENING CDMCSOUT" TO MESG-DESC
PERFORM PROCESS-ERROR
GO TO EXIT-PROGRAM.

CS-SEL-RTN.
CALL "INPFIL" USING FCB-CS-INPUT,

19-11

DS 620341200

RET-STATUS,
CS-INREC,
CS-RECORD-LENGTH,
CS-RETURN-LE!NGTH.

IF RET-STATUS = KES-END-OF-FILE-INPUT
GO TO EXIT-PROGRAM.

IF RET-STATUS NOT = KES-FILE-OK
MOVE "ERROR READING CDMCSRES" TO MESG-DESC
PERFORM PROCESS-ERROR
GO TO EXIT-PROGRAM.

19-12

DS 620341200

Macro - CSSEL04

Library Name - VAX

Parameters - rione

NEXT SENTENCE
ELSE

GO TO CS-SEL-RTN.
MOVE CS-INREC TO CS-OUTREC.

CALL "OUTFIL" USING FCB-CS-OUTPUT,
RET-STATUS,
CS-OUTREC,
CS-OUT-RECORD-LENGTH.

IF RET-STATUS NOT = KES-FILE-OK
STRING "CS-OUTREC WRITE ERROR: " RET-STATUS

DELIMITED BY SIZE INTO MESG-DESC
PERFORM PROCESS-ERROR
GO TO REAL-EXIT-PROGRAM.

ADD 1 TO OUT-COUNT.
GO TO CS-SEL-RTN.

EXIT-PROGRAM.
MOVE "K" TO DISPOSITION.
CALL "CLSFIL" USING FCB-CS-INPUT,

RET-STATUS,
DISPOSITION.

IF RET-STATUS NOT = KES-FILE-OK
STRING "RESULTS FILE CLOSE ERROR: " RET-STATUS

DELIMITED BY SIZE INTO MESG-DESC
PERFORM PROCESS-ERROR
GO TO REAL-EXIT-PROGRAM.

CALL "CLSFIL" USING FCB-CS-OUTPUT,
RET-STATUS,
DISPOSITION.

IF RET-STATUS NOT = KES-FILE-OK
STRING "RESULTS FILE CLOSE ERROR: " RET-STATUS

DELIMITED BY SIZE INTO MESG-DESC
PERFORM PROCESS-ERROR
GO TO REAL-EXIT-PROGRAM.

CALL "DELFIL" USING MY-HOST CDMCSRES.
REAL-EXIT-PROGRAM.

EXIT PROGRAM.
COPY ERRPRO OF IISSCLIB.

19-13

DS 620341200

Macro Name - CSSEL05

Library Name - VAX

Parameters - P1
P2

CS SELECTOR CODE - CASE 2 (NO IF)

IDENTIFICATION DIVISION.
PROGRAM-ID. PI.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 MY-HOST PIC XXX VALUE "P2".
01 MESG-DESC PIC X(60) VALUE SPACES.
01 MODULE-NAME PIC X(10) VALUE "P1".

COPY CHKCDM OF IISSCLIB.
COPY ERRCDM OF IISSCLIB.

COPY ERRFS OF IISSCLIB.

LINKAGE SECTION.
01 IN-FILE-NAME PIC X(80).
01 IN-COUNT PIC $9(9) COMP.
01 OUT-FILE-NAME PIC X(S0).
01 OUT-COUNT PIC S9(9) COMP.
01 RET-STATUS PIC X(5).

01 CS-QUALIFY-VAR.
03 FILLER PIC X.

PROCEDURE DIVISION USING IN-FILE-NAME,
IN-COUNT,
CS-QUALIFY-VAR,
OUT-FILE-NAME,
OUT-COUNT,
RET-STATUS.

19-14

DS 620341200

START-PROGRAM.
MOVE IN-FILE-NAME TO OUT-FILE-NAME.
MOVE IN-COUNT TO OUT-COUNT.
MOVE KES-SUCCESSFUL TO RET-STATUS.

EXIT-PROGRAM.
EXIT PROGRAM.

COPY ERRPRO OF IISSCLIB.

19-15

DS 620341200

MACRO NAME - CSSEL06

LIBRARY NAME - VAX

PARAMETERS - P1
P2

IDENTIFICATION DIVISION.
PROGRAM-ID. P1.

* This program distincts retrieved conceptual
* data.

DATA DIVISION.
WORKING-STORAGE SECTION.
01 TEMP-REC PIC X(P2).
01 DST-REC PIC X(P2).
01 CDMTMPF1 PIC X(80) VALUE SPACES.
01 CDMTMPF2 PIC X(80) VALUE SPACES.
01 FCB-TEMP-1 PIC S9(9) COMP.
01 FCB-TEMP-2 PIC S9(9) COMP.
01 TEMP-RECORD-LENGTH PIC S9(9) COMP.

01 CS-REC.
03 CS-NULL-FLAGS.

* **~1**************************

19-16

DS 620341200

MACRO NAME - CSSEL07

LIBRARY NAME - VAX

PARAMETERS - NONE

*BEGINNING OF PROCEDURE DIVSION FOR CASE 3 WHERE
*THE DISTINCT FLAG IS SET.

PROCEDURE DIVISION USING IN-FILE-NAME,
IN-COUNT,
CS-QUAlIFY-VAR,

OUT-FILE-NAME,
OUT-COUNT,
RET-STATUS.

START-FROGRAM.
MOVE SPACES TO CS-OUTREC.
MOVE ZERO TO OUT-COUNT.
MOVE KES-SUCCESSFUL TO RET-STATUS.
MOVE IN-FILE-NAME TO CDMCSRES.
CALL "NAMFIL" USING CDMCSOUT.
IF CDMCSOUT = LOW-VALUE

MOVE "UNABLE TO GENERATE OUTFILE"
TO MESG-DESC

PERFORM PROCESS-ERROR
GO TO EXIT-PROGRAM.

CALL "NAMFIL" USING CDMTMPF1.
IF CDMTMPF1 = LOW-VALUE

MOVE "UNABLE TO GENERATE TEMPFILE1"
TO MESG-DESC

PERFORPM PROCESS-ERROR
GO TO EXIT-PROGRAM.

CALL "NAMFIL" USING CDMTMPF2.
IF CDMTMPF2 = LOW-VALUE

MOVE "UNABLE TO GENERATE TEMPFILE2"
TO MESG-DESC

PERFORM PROCESS-ERROR
GO TO EXIT-PROGRAM.

MOVE "R" TO DISPOSITION.
CALL "OPNFIL" USING FCB-CS-INPUT,

RET-STATUS,
CDMCSRES,
DISPOSITION,
CS-RECORD-LENGTH,
NUMBER-OF-RECORDS.

19-17

DS 620341200

IF RET-STATUS NOT = KES-FILE-OK
MOVE "ERROR OPENING FILE CDMCSRES" TO MESG-DESC
PERFORM PROCESS-ERROR
GO TO EXIT-PROGRAM.

MOVE "W" TO DISPOSITION.
CALL "OPNFIL" USING FCB-TEMP-1,

RET-STATUS,
CDMTMPF1,
DISPOSITION,
CS-RECORD-LENGTH,
NUMBER-OF-RECORDS.

IF RET-STATUS NOT = KES-FILE-OK
MOVE "ERROR OPENING FILE CDMTMPFI" TO MESG-DESC
PERFORM PROCESS-ERROR
GO TO EXIT-PROGRAM.

CS-SEL-RTN.
CALL "INPFIL" USING FCB-CS-INPUT,

RET-STATUS,
CS-REC,
CS-RECORD-LENGTH,
CS-RETURN-LENGTH.

IF RET-STATUS = KES-END-OF-FILE-INPUT
MOVE "K" TO DISPOSITION
CALL "CLSFIL" USING FCB-CS-INPUT,

RET-STATUS,
DISPOSITION

IF RET-STATUS NOT = KES-FILE-OK
MOVE "ERROR CLOSING FILE CDMCSRES" TO MESG-DESC
PERFORM PROCESS-ERROR
GO TO EXIT-PROGRAM

ELSE
CALL "CLSFIL" USING FCB-TEMP-1,

RET-STATUS,
DISPOSITION

IF RET-STATUS NOT = KES-FILE-OK
MOVE "ERROR CLOSING FILE CDMTMPF1"

TO MESG-DESC
PERFORM PROCESS-ERROR
GO TO EXIT-PROGRAM

ELSE
GO TO CS-SEL-RTN-EXIT.

IF RET-STATUS NOT = KES-FILE-OK
MOVE "ERROR READING FILE CDMCSREC" TO MESG-DESC
PERFORM PROCESS-ERROR
GO TO EXIT-PROGRAM'f.

19-18

DS 620341200

MACRO NAME - CSSEL08

LIBRARY NAME - VAX

PARAMETERS - NONE

NEXT SENTENCE
ELSE

GO TO CS-SEL-RTN.

19-19

DS 620341200

MACRO NAME - CSSEL09
LIBRARY NAME - VAX
PARAMETERS - NONE

MOVE CS-REC TO TEMP-REC.
CALL "OUTFIL" USING FCB-TEMP-I,

RET-STATUS,
TEMP-REC,
CS-RECORD-LENGTH.

IF RET-STATUS NOT = KES-FILE-OK
MOVE "ERROR WRITING TO FILE CDMTMPFI" TO MESG-DESC
PERFORM PROCESS-ERROR
GO TO EXIT-PROGRAM.

GO TO CS-SEL-RTN.
CS-SEL-RTN-EXIT.

EXIT.
START-SORT.

MOVE CDMTMPFI TO FILE-NAME-I.
CALL "CDMPSOR" USING INPUT-FILE-i,

CDMTMPF2,
.

MESG-DESC,
RET-STATUS.

MOVE RET-STATUS TO QCS-CDMP-CHECK-STATUS.
IF NOT QCS-SUCCESSFUL

MOVE "SORT/MERGE PROGRAM FAILED" TO MESG-DESC
PERFORM PROCESS-ERROR
GO TO EXIT-PROGRAM.

MOVE "R" TO DISPOSITION.
CALL "OPNFIL" USING FCB-TEMP-2,

RET-STATUS,
CDMTMPF2,
DISPOSITION,
TEMP-RECORD-LENGTH,
NUMBER-OF-RECORDS.

IF RET-STATUS NOT = KES-FILE-OK
MOVE "ERROR OPENING FILE CDMTMPF2" TO MESG-DESC
PERFORM PROCESS-ERROR
GO TO EXIT-PROGRAM.

MOVE SPACES TO DST-REC.
RELEASE-RECORDS.

MOVE SPACES TO TEMP-REC.
CALL "INPFIL" USING FCB-TEMP-2,

RET-STATUS,
TEMP-REC,
TEMP-RECORD-LENGTH,
CS-RETURN-LENGTH.

19-20

DS 620341200

IF RET-STATUS = KES-END-OF-FILE-INPUT
MOVE "K" TO DISPOSITION
CALL "CLSFIL" USNG FCB-TEMP-2,

RET-STATUS,
DISPOSITION

IF RET-STATUS NOT = KES-FILE-OK
MOVE "ERROR CLOSING FILE CDMTMPF2" TO MESG-DESC
PERFORM PROCESS-ERROR
GO TO EXIT-PROGRAM

ELSE
CALL "CLSFIL" USING FCB-CS-OUTPUT,

RET-STATUS,
DISPOSITION

IF RET-STATUS NOT = KES-FILE-OK
MOVE "ERROR CLOSING FILE CDMCSOUT"

TO MESG-DESC
PERFORM PROCESS-ERROR
GO TO EXIT-PROGRAM

ELSE
GO TO EXIT-PROGRAM.

IF RET-STATUS NOT = KES-FILE-OK
MOVE "ERROR READING FILE CDMTMPF2" TO MESG-DESC
PERFORM PROCESS-ERROR
GO TO EXIT-PROGRAM.

******** ********************************* ************* **

IF TEMP-REC = DST-REC
GO TO RELEASE-RECORDS.
ADD 1 TO OUT-COUNT.
MOVE TEMP-REC TO DST-REC.
MOVE TEMP-REC TO CS-OUTREC.
CALL "OUTFIL" USING FCB-CS-OUTPUT,

RET-STATUS,
CS-OUTREC,
TEMP-RECORD-LENGTH.

IF RET-STATUS NOT = KES-FILE-OK
MOVE "ERROR WRITING TO FILE CDMCSOUT" TO MESG-DESC
PERFORM PROCESS-ERROR
GO TO EXIT-PROGRAM.
GO TO RELEASE-RECORDS.

EXIT-PROGRAM.
MOVE SPACES TO CS-REC, CS-OUTREC, TEMP-REC.
PEFORM DEL-PARA.

END-PROGRAM.
EXIT PROGRAM.

COPY ERRPRO OF IISSCLIB.
DEL-PARA.

CALL "DELFIL" USING MY-HOST,
CDMCSRES.

CALL "DELFIL" USING MY-HOST,

19-21

DS 620341200

CDMTMPF1.
CALL "DELFIL" USI114 MY-HOST,

CDMTMPF2.

19-22

DS 620341200

SECTION 20

Function PRESD - Generate Referential Integrity Test and Key
Uniqueness Program

This function generates COBOL source code according to the
ANSI X3.23-1974 standard, which at runtime performs the final
qualification on type 1 and type 2 referential integrity tests
and key uniqueness tests.

20.1 Inputs

1. TARGET-HOST PIC XXX

Host upon which the Type 2 R.I. Program will execute
at runtime.

2. MY-HOST PIC XXX

Host upon which CDPRESD executes at precompile time..

3. MOD-NAME PIC X(l0)

The program identification name of the Type 2 R.I.
Program.

4. CS-ACTION-LIST included in CSAL copy member

Conceptual representation of fields to be deleted.

5. CS-QUALIFY-LIST included in CSQUAL copy member

Conceptual representation of the WHERE clause.

6. BOOLEAN-LIST

Contains information about boolean operators and
parenthesized logic from the WHERE clause.

7. IS-QUALIFY-LIST

Internal representation of the WHERE clause.

20.2 CDM Requirements

None

20.3 Internal Requirements

20-1

DS 620341200

None

Macro Generation

Macros are code templates with optional substitutable
parameters which allow generated code to be more independent of
the generating programs. All macros are to be generated through
calls to CDMACR. This routine requires the following
parameters:

Input
FILE-NAME PIC X(30) included in MACDAT copy member
LIBRARY-NAME PIC X(30) included in MACDAT copy member
MACRO-NAME PIC X(8) included in MACDAT copy member
SUBSTITUTION-LIST included in SBSTLST copy member

Output
RET-STATUS PIC X(5)

FILE-NAME contains the name of the file to which code is to
be generated. This file must be closed prior to the CDMACR call.
Upon return to CDPRE8D, FILE-NAME must be reopened for EXTEND to
allow code to be generated at the end of the file.

LIBRARY-NAME contains the name of the host upon which the
generated code will execute at runtime. This value is identical
to the CDPRE8D input parameter TARGET-HOST.

MACRO-NAME contains the name of the macro to be generated,

for example T2RI01.

SUBSTITUTION-LIST is described by the following structure:

01 SUBSTITUTION-LIST
03 SL-USED PIC 99
03 SL-MAX PIC 99
03 SL-ROW-SIZE PIC 99
03 SL-ENTRY OCCURS 8 TIMES

INDEXED BY SL-INDEX
05 SL-PARAMETER PIC X(30)
05 SL-SUBST-VAL PIC X(30)

SUBSTITUTION-LIST is populated by setting SL-USED to the
number of parameter values the macro requires. SL-PARAMETER
(index) contains the macro parameter to be substituted for, for
example P1. SL-SUBST-VAL (index) contains the corresponding
substitution value, for example CS-NDML-NO.

20-2

DS 620341200

20.4 Processinq

I. Generate a unique file name to contain the generated
COBOL code by calling GENFIL. GENFIL requires
MY-HOST as an input parameter and returns the 30
character file name and the 5 character status. This
file name must be moved to the CDPRE8D output
parameter GEN-FILE-NAME.

2. Determine which case is being handled. The case
definitions are:

CASE 1 - A conceptual IF must be generated for final
qualification.

CASE 1 applies when at least 1 used IS-QUALIFY

entry has ISQ-EVAL-FLAG equal zero.

CASE 2 - No conceptual IF is to be generated.

CASE 2 applies when no used ISQ-EVAL-FLAG has a
zero value.

3. Processing For CASE 1

3.1 Generate the Identification Division through part
of the file section by substituting the contents
of CDPRE8D input parameter MOD-NAME: for parameter
P1 in macro T2RIO1.

3.2 For each CS field, generate the CS null flags
according to the following format:

05 CS-NULL-FZAG-xx PIC 9.

05 CS-NULL-FLAG-yy PIC 9.

where xx through yy are the values of CS-INDEX.
The 05 must start in column 16.

3.3 Generate each CS field description using the
CS-TYPE, CS-SIZE and CS-ND fields. Use routine
CDPIC to generate the picture clauses.

03 CS-VARxx pic clause.

20-3

DS 620341201

03 CS-VARyy pic clause.

where xx through yy are the values of CS-INDEX and
pic clause is the picture clause generated by
CDP1C.

3.4 Generate the working storage section through part
of the linkage section by substituting the value
of CDPRESD input parameter TARGET-HOST for P1 and
the value of input parameter MOD-NAME for P2 in
macro T2RI02.

3.5 Generate the names and picture clauses for the
conceptual schema qualify variables which will be
passed to the generated program at runtime.

Scan the CS-QUALIFY-LIST searching for a zero
value in a used CSQ-AUCR. For each CSQ element
with CSQ-AUCR equal zero, generate the following:

03 CSQ-VAR-nn pic clause.

where nn is the CSQ-INDEX value. Call CDPIC using
the corresponding CSQ-L-TYPE, CSQ-L-SIZE and
CSQ-L-ND to generate the picture clause.

3.6 Generate the beginning of the Procedure Division
using macro T2RI03 which has no parameters.

3.7 Call CDGENIF to generate the IF clauses to perform
the final qualification on the returned conceptual
rows. CDGENIF requires the following parameters:

Input
BOOLEAN-LIST
CS-QUALIFY-LIST
DUMMY PIC X
QUALIFY-TYPE PIC X VALUE "C"
FILE-NAME PIC X(30)
SUBTRANS-ID PIC 999 VALUE ZERO
DUMMY PIC X

Output
RET-STATUS PIC X(5)

FILE-NAME must contain the file name generated
in step 1. This file must be closed prior to

20-4

DS 620341200

the CDGENIF call.

3.8 Generate on the reopened for EXTEND file, the
macro T2RI04 which has no parameters and which
terminates the generated program.

Processing for CASE 1 is complete.

4. Processing For CASE 2

Generate the complete CASE 2 Type 2 referential
integrity checker by substituting the value of
CDPRE8D input parameter MOD-NAME for parameter
P1 and the value of input parameter TARGET-HOST
for P2 in macro T2RI05.

Processing is complete for CASE 2.

20.5 Outputs

1. GEN-FILE-NAME PIC X(30)

The file name containing the generated COBOL Type 2
R.I. Program.

2. RET-STATUS PIC X(5)

Error Status. A value equal to KES-SUCCESSFUL as
defined in the ERRCDM copy member indicates successful
completion.

20-5

DS 62034120&

Macro T2RI01

Library Name - VAX

Parameters - P1

IDENTIFICATION DIVISION.
PROGRAM-ID. P1.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION
01 CS-REC.

03 CS-NULL-FLAGS.

20-6

DS 620341200

Macro T2RI02

Library Name - VAX

Parameters - P1
P2

01 CDMCSRES PIC X(80).
01 MY-HOST PIC XXX VALUE "P1".
01 MESG-DESC PIC X(60) VALUE SPACES.
01 MODULE-NAME PIC X(10) VALUE "P2".
01 DISPOSITION PIC X.
01 FCB-CS-INPUT PIC S9(9) COMP.
01 CS-RECORD-LENGTH PIC S9(9) COMP.
01 NUMBER-OF-RECORDS PIC S9(9) COMP VALUE 2000.
01 RETURN-LENGTH PIC S9(9) COMP.
COPY CHKCDM OF IISSCLIB.
COPY ERRCDM OF IISSCLIB.
COPY ERRFS OF IISSCLIB.

LINKAGE SECTION.
01 CDM-CS-RESULTS-FILE PiC X(80).
01 RI-COUNT PIC 9(6).
01 RET-STATUS PIC X(5).
01 CS-QUALIFY-VAR.

20-7

DS 620341200

Macro T2RI03

Library Name - VAX

Parameters - none

PROCEDURE DIVISION USING CDM-CS-RESULTS-FILE,
CS-QUALIFY-VAR,

RI-COUNT,
RET-STATUS.

START PROGRAM.
MOVE ZERO TO RI-COUNT.
MOVE KES-SUCCESSFUL TO RET-STATUS.
MOVE CDM-CS-RESULTS-FILE TO "CDMCSRES".
MOVE "R" TO DISPOSITION.
CALL "OPNFIL" USING FCB-CS-INPUT,

RET-STATUS,
CDMCSRES,
DISPOSITION,
CS-RECORD-LENGTH,
NUMBER-OF-RECORDS.

IF RET-STATUS NOT = KES-FILE-OK
MOVE "ERROR OPENING FILE CDMCSRES" TO MESG-DESC
PERFORM PROCESS-ERROR
GO TO EXIT-PROGRAM.

CS-R12-RTN.
CALL "INPFIL" USING FCB-CS-INPUT,

RET-STATUS,
CS-REC,
CS-RECORD-LENGTH,
RETURN-LENGTH.

IF RET-STATUS = KES-END-OF-FILE-INPUT,
GO TO EXIT-PROGRAM.

IF RET-STATUS NOT = KES-FILE-OK
MOVE "ERROR READING FILE CDMCSRES" TO MESG-DESC
PERFORM PROCESS-ERROR
GO TO EXIT-PROGRAM.

20-3

DS 620341200

Macro T2RI04

Library Nayne - VAX

Parameters - none

MOVE 1 TO RI-COUNT
GO TO EXIT-PROGRAM

ELSE
GO TO CS-R12-RTN.

EXIT-PROGRAM.
MOVE "K" TO DISPOSITION.
CALL "CLSFIL" USING FCB-CS-INPUT,

RET-STATUS,
DISPOSITION.

IF RET-STATUS NOT = KES-FILE-OK
MOVE "EROR CLOSING FILE CDMCSRES" TO MESG-DESC
PERFOR4 ERROR-PROCESS

ELSE
CALL "DELFIL" USING MY-HOST, CDMCSRES.

EXIT PROGRAM.
COPY ERRPRO OF IISSCLIB.

20-9

DS 620341200

Macro T2RI05

Library Name - VAX

Parameters - P1
P2

IDENTIFICATION DIVISION.
PROGRAM-ID. P1.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 MY-HOST PIC XXX VALUE "P2".
01 MESG-DESC PIC X(60) VALUE SPACES.
01 MODULE-NAME PIC X(10) VALUE "P1".
COPY CHKCDM OF IISSCLIB.
COPY ERRCDM OF IISSCLIB.
COPY ERRFS OF IISSCLIB.

LINKAGE SECTION.
01 CDM-CS-RESULTS-FILE PIC.X(80).
01 RI-COUNT PIC 9(6).
01 RET-STATUS PIC X(5).
01 CS-QUALIFY-VAR.

03 FILLER PIC X.

PROCEDURE DIVISION USING CDM-CS-RESULTS-FILE,
CS-QUALIFY-VAR,

RI-COUNT,
RET-STATUS.

START PROGRAM.
MOVE 1 TO RI-COUNT.
MOVE KES-SUCCESSFUL TO RET-STATUS.

EXIT-PROGRAM.
CALL "DELFIL" USING MY-HOST, CDM-CS-RESULTS-FILE.
EXIT PROGRAM.

TB
COPY ERRPRO OF IISSCLIB.

20-10

U S Government Printing Office 1992-648-127/62428

